view m-toolbox/classes/+utils/@math/math.m @ 38:3aef676a1b20 database-connection-manager

Keep backtrace on error
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Mon, 05 Dec 2011 16:20:06 +0100
parents f0afece42f48
children bc767aaa99a8
line wrap: on
line source

% MATH helper class for math utility functions.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DESCRIPTION: MATH is a helper class for math utility functions.
%
% To see the available static methods, call
%
% >> methods utils.math
%
% HISTORY: M Hewitson 26-05-08
%              Creation
%
% VERSION: $Id: math.m,v 1.77 2011/10/07 08:19:06 miquel Exp $
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

classdef math
  
  %------------------------------------------------
  %--------- Declaration of Static methods --------
  %------------------------------------------------
  methods (Static)
    
    
    %-------------------------------------------------------------
    % List other methods
    %-------------------------------------------------------------
    
    varargout = intfact(varargin); % Compute two integers P and Q
    varargout = cpf(varargin)
    varargout = lp2z(varargin)
    p         = phase(resp)
    r         = deg2rad(deg, min, sec)
    [G,ri]    = fq2ri(f0, Q)
    ri        = fq2ri2(f0, Q)
    [f0, q]   = ri2fq(c)
    deg       = unwrapdeg(phase)
    val       = rand(r1, r2)
    [res,poles,dterm,mresp,rdl,rmse] = autocfit(y,f,params)
    [res,poles,dterm,mresp,rdl,rmse] = autodfit(y,f,fs,params)
    [res,poles,dterm,mresp,rdl] = ctfit(y,f,poles,weight,fitin)
    [res,poles,dterm,mresp,rdl] = dtfit(y,f,poles,weight,fitin)
    [res,poles,dterm,mresp,rdl,rmse] = vcfit(y,f,poles,weight,fitin)
    [res,poles,dterm,mresp,rdl,rmse] = vdfit(y,f,poles,weight,fitin)
    [h11,h12,h21,h22] = eigpsd(psd1,csd,psd2,varargin)
    [h11,h12,h21,h22] = eigcsd(csd11,csd12,csd21,csd22,varargin)
    varargout = pfallps(ir,ip,id,mresp,f,varargin)
    [nr,np,nd,nmresp] = pfallpsymz(r,p,d,mresp,f,fs)
    [nr,np,nd,nmresp] = pfallpsyms(r,p,d,f)
    varargout = pfallpz(ir,ip,id,mresp,f,fs,varargin)
    varargout = psd2tf(varargin)
    varargout = psd2wf(varargin)
    spoles = startpoles(order,f,params)
    weight = wfun(y,weightparam)
    [ext,msg] = stopfit(y,rdl,rmse,ctp,lrscond,rmsevar)
    pfr = pfresp(pfparams)
    Deriv = fpsder(a, params)
    zi = iirinit(a,b)
    sw = spflat(S)
    out = randelement(arr, N)
    covmat = jr2cov(J,resid)
    J = getjacobian(coeff,model,X)
    h = ndeigcsd(csd,varargin)
    ostruct = csd2tf(csd,f,params)
    [res,poles,fullpoles,mresp,rdl,mse] = psdzfit(y,f,poles,weight,fitin)
    varargout = computepsd(Sxx,Svxx,w,range,nfft,Fs,esttype)
    res = isequal(varargin)
    [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = linfitsvd(varargin)
    [a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = linlsqsvd(varargin)
    Zi = getinitstate(res,poles,S0,varargin)
    varargout = pfallpz2(ip,mresp,f,fs)
    ostruct = csd2tf2(csd,f,params)
    varargout = pfallpsymz2(ip,mresp,f,fs)
    varargout = pfallpsyms2(ip,mresp,f)
    varargout = pfallps2(ip,mresp,f)
    FisMat = fisher_2x2(i1,i2,n,mdl,params,numparams,freqs,N,pl,inNames,outNames)
    FisMat = fisher_1x1(i1,n,mdl,params,numparams,freqs,N,pl,inNames,outNames)
    best = diffStepFish(i1,i2,S11,S12,S21,S22,N,meval,params,ngrid,ranges,freqs,inNames,outNames)
    best = diffStepFish_1x1(i1,S11,N,meval,params,values,ngrid,ranges,freqs,inNames,outNames)    
    loglk = loglikelihood(varargin)
    loglk = loglikelihood_ssm(varargin)
    [loglk snr] = loglikelihood_matrix(varargin)
    snrexp = stnr(tmplt1,tmplt2,out1,out2,InvS11,InvS22,InvS12,InvS21)
    loglk = loglikelihood_ssm_td(xp,in,out,parnames,model,inNames,outNames,Noise,varargin)
    loglk = loglikelihood_td(res,noise,varargin)
    params = fitPrior(prior,nparam,chain,bins)
    Xt = blwhitenoise(npts,fs,fl,fh)
    [smpl smplr] = mhsample(model,in,out,nse,cov,number,limit,param,Tc,xi,xo,search,jumps,parplot,dbg_info,inNames,outNames,fpars,anneal,SNR0,DeltaL,inModel,outModel)
    [A,B,C,D] = pf2ss(res,poles,dterm)
    [w_i,powers,w_mse,p_mse] = rootmusic(x,p,varargin)
    [music_data,msg] = music(x,p,varargin)
    k = getk(z,p,zfg)
    dc = getdc(z,p,k)
    [A,B,C,D] = pzmodel2SSMats(pzm)
    varargout = filtfilt_filterbank(fbk,in)
    cmat = xCovmat(x,y,varargin)
    chi2 = chisquare_ssm_td(xp,in,out,parnames,model,inNames,outNames,varargin)
    [CorrC,SigC] = cov2corr(Covar)
    Covar = corr2cov(CorrC,SigC)
    R = Rcovmat(x)
    smpl = mhsample_td(model,in,out,cov,number,limit,parnames,Tc,xi,xo,search,jumps,parplot,dbg_info,inNames,outNames,inNoise,inNoiseNames,cutbefore,cutafter)
    Bxy = rjsample(model,in,out,nse,cov,number,limit,param,Tc,xi,xo,search,jumps,parplot,dbg_info,inNames,outNames,inModel,outModel)
    [Fout,x] = ecdf(y)
    cVal = SKcriticalvalues(n1,n2,alph)
    x = Finv(p,n1,n2)
    p = Fcdf(x,n1,n2)
    rsp = mtxiirresp(fil,freq,fs,bank)
    rsp = mtxiirresp2(A,B,freq,fs)
    rsp = mtxratresp2(A,B,freq)
    f = getfftfreq(nfft,fs,type)
    h = cdfplot(y1,y2,ops)
    h = qqplot(y1,y2,ops)
    h = ppplot(y1,y2,ops)
    boxplot(varargin)
    p = Normcdf(x,mu,sigma)
    x = Norminv(p,mu,sigma)
    p = Chi2cdf(x,v)
    x = Chi2inv(p,v)
    [H, KSstatistic, criticalValue, pValue] = kstest(y1, y2, alpha, varargin)
    [test,critValue,pValue] = Ftest(F,dof1,dof2,alpha,twoTailed)
    test = SFtest(X,Y,alpha,showPlots)
    s = Skew(x)
    k = Kurt(x)
    [rw,s] = crank(w)
    [rs,pValue,TestRes] = spcorr(y1,y2,alpha)
    [chi2,g] = chi2(p,data,models,Dmodels,lb,ub)
    pValue = KSpValue(KSstatistic,n1,n2)
    R = freqCorr(w,eta,T)
    varargout = overlapCorr(w,N,navs)
    Gf = dft(gt,f,T)
    Sf = computeDftPeriodogram(x,fs,f,order,win,psll)
    Sf = welchdft(x,fs,f,Ns,olap,navs,order,win,psll)
    y = unitStep(x);
    y = heaviside(x);
    %-------------------------------------------------------------
    %-------------------------------------------------------------
    
  end % End static methods
  
  
end

% END