Mercurial > hg > ltpda
view m-toolbox/classes/@ao/linfit.m @ 38:3aef676a1b20 database-connection-manager
Keep backtrace on error
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% LINFIT is a linear fitting tool %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: LINFIT is a linear fitting tool based on MATLAB's % lscov function. It solves an equation in the form % % Y = P(1) + X * P(2) % % for the fit parameters P. % The output is a pest object where the fields are containing: % Quantity % Field % Fit parameters y % Uncertainties on the fit parameters % (given as standard deviations) dy % The reduced CHI2 of the fit chi2 % The covariance matrix cov % The degrees of freedom of the fit dof % % CALL: P = linfit(X, Y, PL) % P = linfit(A, PL) % % INPUTS: Y - dependent variable % X - input variable % A - data ao whose x and y fields are used in the fit % PL - parameter list % % OUTPUT: P - a pest object with the fitting coefficients % % % PARAMETERS: % 'dy' - uncertainty on the dependent variable % 'dx' - uncertainties on the input variable % 'p0' - initial guess on the fit parameters used ONLY to propagate % uncertainities in the input variable X to the dependent variable Y % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'linfit')">Parameters Description</a> % % VERSION: $Id: linfit.m,v 1.23 2011/05/15 22:52:57 mauro Exp $ % % EXAMPLES: % % %% Make fake AO from polyval % nsecs = 100; % fs = 10; % % u1 = unit('fm s^-2'); % u2 = unit('nT'); % % pl1 = plist('nsecs', nsecs, 'fs', fs, ... % 'tsfcn', 'polyval([10 1], t) + randn(size(t))', ... % 'xunits', 's', 'yunits', u1); % % pl2 = plist('nsecs', nsecs, 'fs', fs, ... % 'tsfcn', 'polyval([-5 0.2], t) + randn(size(t))', ... % 'xunits', 's', 'yunits', u2); % % a1 = ao(pl1); % a2 = ao(pl2); % % %% 1) Determine dependance from time of a time-series % %% Fit a stright line the a1 dependance from time % p1 = linfit(a1, plist()); % p2 = linfit(a1, plist('dx', 0.1*ones(size(a1.x)), 'dy', 0.1*ones(size(a1.y)), 'P0', ao([0 0]))); % p3 = linfit(a1, plist('dx', ao(0.1, plist('yunits', a1.xunits)), 'dy', ao(0.1, plist('yunits', a1.yunits)), 'P0', p1)); % % %% Compute fit: evaluating pest % % b1 = p1.eval(plist('type', 'tsdata', 'XData', a1, 'xfield', 'x')); % b2 = p2.eval(plist('type', 'tsdata', 'XData', a1.x)); % b3 = p3.eval(plist('type', 'tsdata', 'XData', a1.x)); % % %% Plot fit % iplot(a1, b1, b2, b3, plist('LineStyles', {'', '--', ':', '-.'})); % % %% Remove linear trend % c = a1 - b1; % iplot(c) % % %% 2) Determine dependance of a time-series from another time-series % %% Fit with a straight line the a1 dependance from a2 % % p1 = linfit(a1, a2, plist()); % p2 = linfit(a1, a2, plist('dx', 0.1*ones(size(a1.x)), 'dy', 0.1*ones(size(a1.x)), 'P0', ao([0 0]))); % p3 = linfit(a1, a2, plist('dx', ao(0.1, plist('yunits', a1.yunits)), 'dy', ao(0.1, plist('yunits', a2.yunits)), 'P0', p1)); % % %% Compute fit: evaluating pest % % b1 = p1.eval(plist('type', 'xydata', 'XData', a1.y, 'xunits', a1.yunits)); % b2 = p2.eval(plist('type', 'xydata', 'XData', a1)); % b3 = p3.eval(plist('type', 'xydata', 'XData', a1.y, 'xunits', a1.yunits)); % % %% Build reference object % a12 = ao(plist('xvals', a1.y, 'yvals', a2.y, ... % 'xunits', a1.yunits, 'yunits', a2.yunits)); % % %% Plot fit % iplot(a12, b1, b2, b3, plist('LineStyles', {'', '--', ':', '-.'})); % % %% Remove linear trend % c = a12 - b3; % iplot(c) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = linfit(varargin) % check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end % tell the system we are runing import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % collect all AOs and plists [aos, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pli = utils.helper.collect_objects(varargin(:), 'plist', in_names); if nargout == 0 error('### linfit can not be used as a modifier method. Please give at least one output'); end % combine plists, making sure the user input is not empty pli = combine(pli, plist()); pl = parse(pli, getDefaultPlist()); % extract arguments if (length(aos) == 1) % we are using x and y fields of the single ao we have x = aos(1).x; dx = aos(1).dx; y = aos(1).y; dy = aos(1).dy; xunits = aos(1).xunits; yunits = aos(1).yunits; argsname = aos(1).name; elseif (length(aos) == 2) % we are using y fields of the two aos we have x = aos(1).y; dx = aos(1).dy; y = aos(2).y; dy = aos(2).dy; xunits = aos(1).yunits; yunits = aos(2).yunits; argsname = [aos(1).name ',' aos(2).name]; else error('### linfit needs one or two input AOs'); end % extract plist parameters. For dx and dy we check the user input plist before dx = find(pli, 'dx', dx); dy = find(pli, 'dy', dy); p0 = find(pl, 'p0'); % vectors length len = length(y); % uncertainty on Y if isempty(dy) dy = 1; end if isa(dy, 'ao') % check units if yunits ~= dy.yunits error('### Y and DY units are not compatible - %s %s', char(yunits), char(dy.yunits)); end % extract values from AO dy = dy.y; end if isscalar(dy) % given a single value construct a vector dy = ones(len, 1) * dy; end % weights sigma2 = dy.^2; % extract values for initial guess if (isa(p0, 'ao') || isa(p0, 'pest')) p0 = p0.y; end % uncertainty on X if ~isempty(dx) if length(p0) ~= 2 error('### initial parameters guess p0 is mandatory for proper handling of X uncertainties'); end if isa(dx, 'ao') % check units if xunits ~= dx.yunits error('### X and DX units are not compatible - %s %s', char(xunits), char(dx.yunits)); end % extract values from AO dx = dx.y; end if isscalar(dx) % given a single value construct a vector dx = ones(len, 1) * dx; end % add contribution to weights sigma2 = sigma2 + p0(2)^2 .* dx.^2; end % construct matrix m = [ ones(len, 1) x ]; % solve [p, stdp, mse, s] = lscov(m, y, 1./sigma2); % scale errors and covariance matrix stdp = stdp ./ sqrt(mse); s = s ./ mse; % compute chi2 dof = len - 2; chi2 = sum((y - p(1)-p(2)*x).^2 ./ sigma2) / dof; % prepare model, units, names names = {'P1', 'P2'}; model = 'P1 + P2*X'; model = smodel(plist('expression', model, ... 'params', names, ... 'values', p, ... 'xvar', 'X', ... 'xunits', xunits, ... 'yunits', yunits ... )); units = [yunits simplify(yunits/xunits)]; % Build the output pest object out = pest; out.setY(p); out.setDy(stdp); out.setCov(s); out.setChi2(chi2); out.setDof(dof); out.setNames(names{:}); out.setYunits(units); out.setModels(model); out.name = sprintf('linfit(%s)', argsname); out.addHistory(getInfo('None'), pl, ao_invars, [aos(:).hist]); % Set procinfo object out.procinfo = plist('MSE', mse); % set outputs varargout{1} = out; end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist(); end % build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.op, '$Id: linfit.m,v 1.23 2011/05/15 22:52:57 mauro Exp $', sets, pl); ii.setModifier(false); ii.setArgsmin(1); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if ~exist('pl', 'var') || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() % default plist for linear fitting pl = plist.LINEAR_FIT_PLIST; end