Mercurial > hg > ltpda
view m-toolbox/classes/@pz/resp.m @ 38:3aef676a1b20 database-connection-manager
Keep backtrace on error
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% RESP returns the complex response of the pz object. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: RESP returns the complex response of the pz object. The % response is computed assuming that object represents a pole. % If the object represents a zero, just take the inverse of % the returned response: 1./r. % % CALL: [f,r] = resp(p, f); % compute response for vector f % [f,r] = resp(p, f1, f2, nf); % compute response from f1 to f2 % % in nf steps. % [f,r] = resp(p, f1, f2, nf, scale); % compute response from f1 to f2 % % in nf steps using scale ['lin' or 'log']. % [f,r] = resp(p); % compute response % % REMARK: This is just a helper function. This function should only be % called from class functions. % % VERSION: $Id: resp.m,v 1.9 2011/02/18 16:48:54 ingo Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [f,r] = resp(varargin) %%% Input objects checks if nargin < 1 error('### incorrect number of inputs.') end %%% look at inputs p = varargin{1}; if ~isa(p, 'pz') error('### first argument should be a pz object.'); end %%% decide whether we modify the pz-object, or create a new one. p = copy(p, nargout); %%% Now look at the pole f0 = p.f; Q = p.q; %%% Define frequency vector f = []; if nargin == 1 f1 = f0/10; f2 = f0*10; nf = 1000; scale = 'lin'; elseif nargin == 2 f = varargin{2}; elseif nargin == 4 f1 = varargin{2}; f2 = varargin{3}; nf = varargin{4}; scale = 'lin'; elseif nargin == 5 f1 = varargin{2}; f2 = varargin{3}; nf = varargin{4}; scale = varargin{5}; else error('### incorrect number of inputs.'); end %%% Build f if we need it if isempty(f) switch lower(scale) case 'lin' f = linspace(f1, f2, nf); case 'log' f = logspace(log10(f1), log10(f2), nf); end end %%% Now compute the response if Q>=0.5 re = 1 - (f.^2./f0^2); im = f ./ (f0*Q); r = 1./complex(re, im); else re = 1; im = f./f0; r = 1./complex(re, im); end end