Mercurial > hg > ltpda
view m-toolbox/test/test_ao_diff.m @ 38:3aef676a1b20 database-connection-manager
Keep backtrace on error
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 (2011-12-05) |
parents | f0afece42f48 |
children |
line wrap: on
line source
clear all %% Make test AO fs = 10; Nsecs = 10; a = ao(plist('waveform', 'sine wave', 'A', 1, 'f', .3, 'phi', 0, 'fs', fs, 'nsecs', Nsecs, 'yunits', 'm')); b = ao(plist('waveform', 'sine wave', 'A', 2*pi*0.3, 'f', .3, 'phi', 90, 'fs', fs, 'nsecs', Nsecs, 'yunits', 'm')); % Theoretical first derivative b2 = -1*((2*pi*0.3)^2).*a; % Theoretical second derivative %% Test first derivative c = diff(a, plist('method', '2POINT')); d = diff(a, plist('method', 'ORDER2')); e = diff(a, plist('method', 'ORDER2SMOOTH')); f = diff(a, plist('method', '3POINT')); g = diff(a, plist('method', '5POINT')); h = diff(a, plist('method', 'FPS', 'ORDER', 'FIRST', 'COEFF', -1/5)); pl = plist('Legends', {'Original','2POINT','ORDER2','ORDER2SMOOTH','3POINT','5POINT','FPS PAR','Theory'},... 'Markers', {'x', 's', '^', 'p', '+', '<', 'o',''}); iplot(a,c,d,e,f,g,h,b, pl) %% Use noise and measure TFs for First Derivatives Nsecs = 1000; a = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', Nsecs)); b = diff(a, plist('method', '2POINT')); c = diff(a, plist('method', 'ORDER2')); d = diff(a, plist('method', 'ORDER2SMOOTH')); e = diff(a, plist('method', '3POINT')); f = diff(a, plist('method', '5POINT')); g = diff(a, plist('method', 'FPS', 'ORDER', 'FIRST', 'COEFF', -1/5)); h = diff(a, plist('method', 'FPS', 'ORDER', 'FIRST', 'COEFF', 1/12)); pl = plist('Nfft', fs*100); tf1 = tfe(a,b,pl); tf2 = tfe(a,c,pl); tf3 = tfe(a,d,pl); tf4 = tfe(a,e,pl); tf5 = tfe(a,f,pl); tf6 = tfe(a,g,pl); tf7 = tfe(a,h,pl); freq = tf1(1,2).data.x; tfthy = 2.*pi.*1i.*freq; tfth = ao(fsdata(freq,tfthy)); pl = plist('Legends', {'2POINT','ORDER2','ORDER2SMOOTH','3POINT',... '5POINT', 'FPS PAR', 'FPS SER','Theory',}); iplot(tf1(1,2), tf2(1,2), tf3(1,2), tf4(1,2), tf5(1,2), tf6(1,2), tf7(1,2), tfth, pl) %% Make test AO for second derivative fs = 10; Nsecs = 10; a = ao(plist('waveform', 'sine wave', 'A', 1, 'f', .3, 'phi', 0, 'fs', fs, 'nsecs', Nsecs, 'yunits', 'm')); b = ao(plist('waveform', 'sine wave', 'A', 2*pi*0.3, 'f', .3, 'phi', 90, 'fs', fs, 'nsecs', Nsecs, 'yunits', 'm')); % Theoretical first derivative b2 = -1*((2*pi*0.3)^2).*a; % Theoretical second derivative %% Test second derivatives c = diff(a, plist('method', 'FPS', 'ORDER', 'SECOND', 'COEFF', 2/7)); d = diff(a, plist('method', 'FPS', 'ORDER', 'SECOND', 'COEFF', -1/12)); e = diff(a, plist('method', 'FPS', 'ORDER', 'SECOND', 'COEFF', 1/4)); pl = plist('Legends', {'Original','FPS PAR','FPS SER','FPS PI','Theory'},... 'Markers', {'x', 'o', 's', '^', ''}); iplot(a,c,d,e,b2, pl) %% Use noise and measure TFs for SECOND Derivatives Nsecs = 1000; a = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', Nsecs)); c = diff(a, plist('method', 'FPS', 'ORDER', 'SECOND', 'COEFF', 2/7)); d = diff(a, plist('method', 'FPS', 'ORDER', 'SECOND', 'COEFF', -1/12)); e = diff(a, plist('method', 'FPS', 'ORDER', 'SECOND', 'COEFF', 1/4)); pl = plist('Nfft', fs*100); tf1 = tfe(a,c,pl); tf2 = tfe(a,d,pl); tf3 = tfe(a,e,pl); freq = tf1(1,2).data.x; tfthy = abs((2.*pi.*1i.*freq).^2); tfth = ao(fsdata(freq,tfthy)); pl = plist('Legends', {'Theory','FPS PAR', 'FPS PI', 'FPS SER',}); iplot(tfth, tf1(1,2), tf3(1,2), tf2(1,2), pl)