% test_ao_ltfe_variance_montecarlo%% Tests that the standard deviation returned by ao.dy in one% frequency bin is equivalent to the matlab's std taking% considering all realisations%% M Nofrarias 22-07-09%% $Id: test_ao_lcpsd_variance_montecarlo.m,v 1.1 2009/08/11 14:20:10 miquel Exp $% function test_ao_ltfe_variance_montecarlo()clear% datansecs = 200;fs = 10;pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'sin(2*pi*2*t) + randn(size(t))');% Make a filterf1 = miir(plist('type', 'highpass', 'fc', 4, 'fs', fs));% WindowNfft = 1000;win = specwin('Hanning', Nfft);pl2 = plist('Lmin',200,'win',win,'Olap',-1)% loopfor i = 1:100 a1 = ao(pl); a2 = filter(a1,plist('filter', f1)); t1(i) = lcpsd(a1,a2,pl2);end%% meanindex = 6;clear relfor i =1:len(t1(1)) mn(i) = [mean(t1(:).y(i))]; % both means are equal rel(:,i) = [std(t1(:).y(i)) mean(t1(:).dy(i))]/abs(mn(i));endk = find(t1(1).procinfo,'k')figureloglog(t1(1).x,rel')figureloglog(t1(1).x,abs(rel(2,:)-rel(1,:)))