Mercurial > hg > ltpda
view testing/utp_1.1/utps/ao/utp_ao_diff.m @ 44:409a22968d5e default
Add unit tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 18:42:11 +0100 |
parents | |
children |
line wrap: on
line source
% UTP_AO_DIFF a set of UTPs for the ao/diff method % % M Hewitson 06-08-08 % % $Id: utp_ao_diff.m,v 1.14 2009/09/20 16:51:33 hewitson Exp $ % % <MethodDescription> % % The diff method of the ao class computes the derivative of the input data % using different methods. % % </MethodDescription> function results = utp_ao_diff(varargin) % Check the inputs if nargin == 0 % Some keywords class = 'ao'; mthd = 'diff'; results = []; disp('******************************************************'); disp(['**** Running UTPs for ' class '/' mthd]); disp('******************************************************'); % Test AOs [at1,at2,at3,at4,at5,at6,atvec,atmat] = eval(['get_test_objects_' class]); % Exception list for the UTPs: [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples(); % Run the tests atvec = [at1 at5 at6]; atmat = [at1 at5 at6; at5 at6 at1]; pli = plist('method', '3point', 'neval', true); results = [results utp_01]; % getInfo call results = [results utp_02(mthd, atvec, @algo_test_y, pli, ple3)]; % Vector input results = [results utp_03(mthd, atmat, @algo_test_y, pli, ple3)]; % Matrix input results = [results utp_04(mthd, at1, at5, at6, @algo_test_y, pli, ple3)]; % List input results = [results utp_05(mthd, at1, atvec, atmat, @algo_test_y, pli, ple3)]; % Test with mixed input results = [results utp_06(mthd, at1, pli, ple2)]; % Test history is working results = [results utp_07(mthd, at1, pli, ple2)]; % Test the modify call works results = [results utp_09(mthd, at5, at6)]; % Test input data shape == output data shape results = [results utp_10(mthd, at1, at5, ple2)]; % Test output of the data results = [results utp_11(mthd, at1, ple1)]; % Test plotinfo doesn't disappear results = [results utp_12(mthd, at1, ple1)]; % Test errors are cleared results = [results utp_13]; % Test with plist: method = 'ORDER2' results = [results utp_14]; % Test with plist: method = 'ORDER2SMOOTH' results = [results utp_15]; % Test with plist: method = '5POINT' disp('Done.'); disp('******************************************************'); elseif nargin == 1 % Check for UTP functions if strcmp(varargin{1}, 'isutp') results = 1; else results = 0; end else error('### Incorrect inputs') end %% Algorithm test for UTP 02,03,04,05 function atest = algo_test_y(in, out, pli) atest = true; % 3 point derivative x = in.data.getX; dx = diff(x); y = in.data.getY; z = zeros(size(y)); z(2:end-1) = (y(3:end)-y(1:end-2)) ./ (dx(2:end)+dx(1:end-1)); z(1) = (y(2)-y(1)) ./ (dx(1)); z(end) = 2*z(end-1)-z(end-2); if ~isequal(out.y, z), atest = false; end end %% UTP_01 % <TestDescription> % % Tests that the getInfo call works for this method. % % </TestDescription> function result = utp_01 % <SyntaxDescription> % % Test that the getInfo call works for no sets, all sets, and each set % individually. % % </SyntaxDescription> try % <SyntaxCode> % Call for no sets io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']); % Call for all sets io(2) = eval([class '.getInfo(''' mthd ''')']); % Call for each set for kk=1:numel(io(2).sets) io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']); end % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that getInfo call returned an minfo object in all cases. % 2) Check that all plists have the correct parameters. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % check we have minfo objects if isa(io, 'minfo') %%% SET 'None' if ~isempty(io(1).sets), atest = false; end if ~isempty(io(1).plists), atest = false; end %%% Check all Sets if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end %%%%%%%%%% SET 'Default' if io(3).plists.nparams ~= 4, atest = false; end % Check key if ~io(3).plists.isparam('method'), atest = false; end if ~io(3).plists.isparam('f0'), atest = false; end if ~io(3).plists.isparam('order'), atest = false; end if ~io(3).plists.isparam('coeff'), atest = false; end % Check default value if ~isequal(io(3).plists.find('method'), '2POINT'), atest = false; end if ~isequal(io(3).plists.find('f0'), '1/Nsecs'), atest = false; end if ~isequal(io(3).plists.find('order'), 'ZERO'), atest = false; end if ~isEmptyDouble(io(3).plists.find('coeff')), atest = false; end % Check options if ~isequal(io(3).plists.getOptionsForParam('method'), {'2POINT', '3POINT', '5POINT', 'ORDER2', 'ORDER2SMOOTH', 'FILTER', 'FPS'}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('f0'), {'1/Nsecs'}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('order'), {'ZERO', 'FIRST', 'SECOND'}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('coeff'), {[]}), atest = false; end end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_01 %% UTP_13 % <TestDescription> % % Control the method with a plist. % % </TestDescription> function result = utp_13 % <SyntaxDescription> % % Test the computation of derivative using a 2nd order % % </SyntaxDescription> try % <SyntaxCode> pl = plist('method', 'ORDER2'); out = diff(at5, pl); mout = rebuild(out); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the diff method uses the 2nd order derivative. % 2) Check that the re-built object is the same object as 'out'. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Compute derivative using a 2nd order x = at5.data.getX; dx = diff(x); y = at5.data.getY; z = zeros(size(y)); m = length(y); % y'(x1) z(1) = (1/dx(1)+1/dx(2))*(y(2)-y(1))+... dx(1)/(dx(1)*dx(2)+dx(2)^2)*(y(1)-y(3)); % y'(xm) z(m) = (1/dx(m-2)+1/dx(m-1))*(y(m)-y(m-1))+... dx(m-1)/(dx(m-1)*dx(m-2)+dx(m-2)^2)*(y(m-2)-y(m)); % y'(xi) (i>1 & i<m) dx1 = repmat(dx(1:m-2),1,1); dx2 = repmat(dx(2:m-1),1,1); y1 = y(1:m-2); y2 = y(2:m-1); y3 = y(3:m); z(2:m-1) = 1./(dx1.*dx2.*(dx1+dx2)).*... (-dx2.^2.*y1+(dx2.^2-dx1.^2).*y2+dx1.^2.*y3); % Check the 2nd oder derivative if ~isequal(out.y, z), atest = false; end % Check the re-built object if ~eq(mout, out, ple2), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_13 %% UTP_14 % <TestDescription> % % Control the method with a plist. % % </TestDescription> function result = utp_14 % <SyntaxDescription> % % Test the computation of derivative using a 2nd order with a parabolic fit % % </SyntaxDescription> try % <SyntaxCode> pl = plist('method', 'ORDER2SMOOTH'); out = diff(at5, pl); mout = rebuild(out); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the diff method uses the 2nd order derivative with a % parabolic fit % 2) Check that the re-built object is the same object as 'out'. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Compute derivative using a 2nd order with a parabolic fit x = at5.data.getX; y = at5.data.getY; dx = diff(x); m = length(y); h = mean(dx); z = zeros(size(y)); % y'(x1) z(1) = sum(y(1:5).*[-54; 13; 40; 27; -26])/70/h; % y'(x2) z(2) = sum(y(1:5).*[-34; 3; 20; 17; -6])/70/h; % y'(x{m-1}) z(m-1) = sum(y(end-4:end).*[6; -17; -20; -3; 34])/70/h; % y'(xm) z(m) = sum(y(end-4:end).*[26; -27; -40; -13; 54])/70/h; % y'(xi) (i>2 & i<(N-1)) Dc = [2 1 0 -1 -2]; tmp = convn(Dc,y)/10/h; z(3:m-2) = tmp(5:m); % Check the 2nd oder derivative if ~isequal(out.y, z), atest = false; end % Check the re-built object if ~eq(mout, out, ple2), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_14 %% UTP_15 % <TestDescription> % % Control the method with a plist. % % </TestDescription> function result = utp_15 % <SyntaxDescription> % % Test the 5 point derivative. % % </SyntaxDescription> try % <SyntaxCode> pl = plist('method', '5POINT'); out = diff(at5, pl); mout = rebuild(out); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the diff method uses the 5 point derivative. % 2) Check that the re-built object is the same object as 'out'. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Compute 5 point derivative x = at5.data.getX; dx = diff(x); y = at5.data.getY; z = zeros(size(y)); z(1) = (y(2)-y(1)) ./ (dx(1)); z(2) = (y(3)-y(1))./(dx(2)+dx(1)); z(3:end-2) = (-y(5:end) + 8.*y(4:end-1) - 8.*y(2:end-3) + y(1:end-4)) ./ (3.*(x(5:end)-x(1:end-4))); z(end-1) = 2*z(end-2)-z(end-3); z(end) = 2*z(end-1)-z(end-2); % Check the 5 point derivative if ~isequal(out.y, z), atest = false; end % Check the re-built object if ~eq(mout, out, ple2), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_15 end