Mercurial > hg > ltpda
view m-toolbox/classes/@ao/spectrogram.m @ 29:54f14716c721 database-connection-manager
Update Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% SPECTROGRAM computes a spectrogram of the given ao/tsdata. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: SPECTROGRAM computes a spectrogram of the given ao/tsdata % using MATLAB's spectrogram function. % % CALL: b = spectrogram(a, pl) % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'spectrogram')">Parameters Description</a> % % VERSION: $Id: spectrogram.m,v 1.30 2011/04/08 08:56:18 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = spectrogram(varargin) bs = []; %%% Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); [ps, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Process parameters pl = parse(ps, getDefaultPlist); as = copy(as, nargout); % Check input analysis object for j=1:numel(as) a = as(j); if isa(a.data, 'tsdata') % Get settings for this AO nfft = find(pl, 'Nfft'); if isempty(nfft) || nfft < 0 nfft = length(a.data.y)/2; end win = find(pl, 'Win'); if ischar(win) win = specwin(win); end if length(win.win) < nfft switch lower(win.type) case 'kaiser' win = specwin(win.type, nfft, win.psll); otherwise win = specwin(win.type, nfft); end utils.helper.msg(msg.PROC1, 'reset window to %s(%d)', strrep(win.type, '_', '\_'), length(win.win)); end nolap = find(pl, 'Nolap'); if isempty(nolap) || nolap < 0 nolap = floor(win.rov*nfft/100); end % Process data [S, F, T, P] = spectrogram(a.data.y, win.win, nolap, nfft, a.data.fs); % Make output AO do = xyzdata(T, F, P); do.setXunits('s'); do.setYunits('Hz'); do.setZunits(a.data.yunits^2 / unit('Hz')); a.data = do; a.name = sprintf('spectrogram(%s)', ao_invars{j}); a.addHistory(getInfo('None'), pl, cellstr(ao_invars{j}), a.hist); % add to output bs = [bs a]; else warning('!!! Skipping input AO [%s] - it is not a time-series', a.name); % add to output bs = [bs a]; end end % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Local Functions % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FUNCTION: getInfo % % DESCRIPTION: Get Info Object % % HISTORY: 11-07-07 M Hewitson % Creation. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: spectrogram.m,v 1.30 2011/04/08 08:56:18 hewitson Exp $', sets, pl); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FUNCTION: getDefaultPlist % % DESCRIPTION: Get Default Plist % % HISTORY: 11-07-07 M Hewitson % Creation. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % Win p = param({'Win', 'The spectral window to apply to the data.'}, paramValue.WINDOW); pl.append(p); % Nolap p = param({'Nolap', 'The segment overlap (%).'}, {1, {-1}, paramValue.OPTIONAL}); pl.append(p); % Nfft p = param({'Nfft', 'The number of samples in each short fft.'}, {1, {-1}, paramValue.OPTIONAL}); pl.append(p); end % PARAMETERS: % % 'Win' - a specwin object [default: Kaiser -200dB psll] % 'Nolap' - segment overlap [default: taken from window function] % 'Nfft' - number of samples in each short fourier transform % [default: sample rate of data] %