Mercurial > hg > ltpda
view m-toolbox/test/test_matrix_linearize.m @ 29:54f14716c721 database-connection-manager
Update Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% test for matrix/linearize % % 15-01-2010 L Ferraioli % CREATION % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % $Id: mdc3_exp3_loop_v3.m,v 1.2 2009/09/24 09:48:12 luigi Exp $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Loading data fprintf('===== loading data... =====\n') % laod parnames and values load C:\Users\Luigi\ltp_data_analysis\MDCs\MDC3\lf_analysis\Models\parnames_10perc.mat load C:\Users\Luigi\ltp_data_analysis\MDCs\MDC3\lf_analysis\Models\exp3_2_10perc_nomvalues.mat load C:\Users\Luigi\ltp_data_analysis\MDCs\MDC3\lf_analysis\Models\exp3_2_10perc_truevalues.mat % load C:\Users\Luigi\ltp_data_analysis\MDCs\MDC3\lf_analysis\Models\usedparams_10perc.mat % set ordered used parameters usedparams = {'dH','dsH','dS11','dS1D','dSD1','dSDD',... 'dh2','dsh2','dx1','dx2'}; [nonfitparnms,ia,ib] = setxor(parnames,usedparams); nonfitnomvals = exp3_nomvalues(ia); nonfittruevals = exp3_truevalues(ia); [fitparnms,ia,ib] = setxor(parnames,nonfitparnms); fitnomvals = exp3_nomvalues(ia); fittruevals = exp3_truevalues(ia); %% get non-linear response model % the model is non-linear in the parameter dependence fprintf('===== Get TF Model... =====\n') H = matrix(plist('built-in','mdc3_ifo2ifo_v2')); % substitute for non fit parameters % subs for non fit parameters for ii = 1:numel(H.objs) H.objs(ii).subs(plist('Params', nonfitparnms, 'Values',nonfittruevals)); end %% Linearize model Hl = linearize(H); %% Random test % get random index i1 = round(numel(Hl.objs)*rand(1)); % choose the parameter i2 = round(numel(H.objs)*rand(1)); % choose the transfer function % extract element to be tested dH = Hl.objs{i1}.objs(i2); % get the parameter name pars = sort(usedparams); prm = pars{i1}; % differentiate tdH = diff(H.objs(i2),prm); % evaluate response dHr = eval(dH); tdHr = eval(tdH); % plot iplot(dHr./tdHr)