Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/fpsder.m @ 5:5a49956df427 database-connection-manager
LTPDAPreferences panel for new LTPDADatabaseConnectionManager
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% FPSDER performs the numeric time derivative %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: FPSDER (Five Points Stencil Derivative) performs the numeric % time derivative using the method of five points stencil. % The function can perform first, second, third and fourth derivetive % of a series of input data. % Given a discrete series of data points, the five-point-stencil method for % the derivative approximation, at a given time t0, is calculated by means % of finite differences between the element at t0 with its four neighbors. % The n-order derivative at a certain time can be approximated by a five % point difference equation: % % d^{n}y[k] % --------- = (1/T^n) * {a*y[k-2] + b*y[k-1] + c*y[k] + d*y[k+1] + e*y[k+2]} % dt^{n} % % It can be demonstrated [1,2] that the five coefficients [a, b, c, d, e] can % be written in terms of only one of them. In fpsder the independent % coefficient is fixed to be the first and is called m. It can be input as % a parameter when the function is called. % % % CALL: Deriv = fpsder(data, params) % % INPUTS: % % - a is a vector containing the data to be differentiated. % - params is a struct with the input parameters: % % - 'ORDER' set the derivative order. Its allowed options are: % - 'ZERO' perform data smoothing using the couefficients % vector d0 = [m -4*m 1+6*m -4*m m]. % - 'FIRST' perform the first derivative using the % couefficients vector d1 = [m -(0.5+2*m) 0 (0.5+2*m) m]./T. % Recomended values of m are in the interval [-0.1, 0.1]. % - 'SECOND' perform the second derivative using the % coefficients vector d2 = [m 1-4*m 6*m-2 1-4*m m]./(T^2). % Recomended values of m are in the interval [-0.11, 0.3]. % - 'THIRD' perform the third derivative using the % coefficients vector d3 = []./(T^3) % - 'FOURTH' perform the third derivative using the % coefficients vector d4 = []./(T^4) % % - 'COEFF' set m coefficient values. % In case of data smoothing: m = -3/35 correspond to the % parabolic fit approximation. % In case of first order derivative: m = -1/5 correspond to the % parabolic fit approximation, m = 1/12 correspond to the % Taylor series approximation. % In case of second order derivative: m = 2/7 corresponds to % the parabolic fit approximation, m = -1/12 corresponds to the % Taylor series approximation and m = 1/4 gives the notch % feature at the Nyquist frequency % % - 'FS' set the data sampling frequency in Hz % % NOTE1: T is the sampling period % NOTE2: The default option for 'ORDER' is 'SECOND' % NOTE3: The default option for 'COEFF' is 2/7 % NOTE4: The default option for 'FS' is 10 % % OUTPUTS: % - D is a vector containing the resulting data after the % differentiation procedure % % REFERENCES: % [1] L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative % estimation in LISA Pathfinder data reduction, % <a % href="matlab:web('http://www.iop.org/EJ/abstract/0264-9381/26/9/094013/','-browser')">Class. Quantum Grav. 26 (2009) 094013.</a> % [2] L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative % estimation in LISA Pathfinder data reduction, % <a % href="matlab:web('http://arxiv.org/abs/0903.0324v1','-browser')">http://arxiv.org/abs/0903.0324v1</a> % % EXAMPLES: % - Performing the second order derivative of a series of data, m % coefficient is fixed to 2/7 and data sampling frequency is % fixed to 10 Hz. % params = struct('ORDER', 'SECOND', 'COEFF', 2/7, 'FS', 10); % Deriv = fpsder(data, params); % % VERSION: '$Id: fpsder.m,v 1.8 2010/04/09 09:59:59 mauro Exp $'; % % HISTORY: 18-03-2008 L Ferraioli % Creation % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Deriv = fpsder(a, params) % Getting input parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Collect inputs % Default input struct defaultparams = struct('ORDER','SECOND',... 'COEFF',2/7,... 'FS',10); names = {'ORDER','COEFF','FS'}; % collecting input and default params if ~isempty(params) for jj=1:length(names) if isfield(params, names(jj)) && ~isempty(params.(names{1,jj})) defaultparams.(names{1,jj}) = params.(names{1,jj}); end end end % values for input variables order = defaultparams.ORDER; m = defaultparams.COEFF; fs = defaultparams.FS; % willing to work with columns if size(a,2)>1 a = a.'; end % Assigning coefficients values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Assigning coefficients values based on the input options switch upper(order) case 'ZERO' Coeffs = [m -4*m 1+6*m -4*m m]; case 'FIRST' Coeffs = [m -(0.5+2*m) 0 (0.5+2*m) -m]; case 'SECOND' Coeffs = [m 1-4*m 6*m-2 1-4*m m]; case 'THIRD' Coeffs = [0 0 0 0 0]; disp('Not yet implemented, sorry!'); case 'FOURTH' Coeffs = [0 0 0 0 0]; disp('Not yet implemented, sorry!'); otherwise error('### Unknown order %s', order); end % Sampling period T = 1/fs; % Building vectors for calculation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Building the 'extended' vector for calculation % a_temp = [a(1);a(1);a(1);a(1);a;a(end);a(end);a(end);a(end)]; a_temp = [2*a(1)-a((4+1):-1:2);a;2*a(end)-a((end-1):-1:end-4)]; % Switching between the input options differentiate switch upper(order) case 'ZERO' Deriv = (Coeffs(1)*a_temp(1:end-4) + Coeffs(2)*a_temp(2:end-3) + Coeffs(3)*a_temp(3:end-2) + Coeffs(4)*a_temp(4:end-1) + Coeffs(5)*a_temp(5:end)); Deriv = Deriv(3:end-2); case 'FIRST' Deriv = (1/T).*(Coeffs(1)*a_temp(1:end-4) + Coeffs(2)*a_temp(2:end-3) + Coeffs(3)*a_temp(3:end-2) + Coeffs(4)*a_temp(4:end-1) + Coeffs(5)*a_temp(5:end)); Deriv = Deriv(3:end-2); case 'SECOND' Deriv = (1/T^2).*(Coeffs(1)*a_temp(1:end-4) + Coeffs(2)*a_temp(2:end-3) + Coeffs(3)*a_temp(3:end-2) + Coeffs(4)*a_temp(4:end-1) + Coeffs(5)*a_temp(5:end)); Deriv = Deriv(3:end-2); case 'THIRD' Deriv = (1/T^3).*(Coeffs(1)*a_temp(1:end-4) + Coeffs(2)*a_temp(2:end-3) + Coeffs(3)*a_temp(3:end-2) + Coeffs(4)*a_temp(4:end-1) + Coeffs(5)*a_temp(5:end)); Deriv = Deriv(3:end-2); case 'FOURTH' Deriv = (1/T^4).*(Coeffs(1)*a_temp(1:end-4) + Coeffs(2)*a_temp(2:end-3) + Coeffs(3)*a_temp(3:end-2) + Coeffs(4)*a_temp(4:end-1) + Coeffs(5)*a_temp(5:end)); Deriv = Deriv(3:end-2); otherwise error('### Unknown order %s', order); end end