Mercurial > hg > ltpda
view m-toolbox/classes/@ao/timeaverage.m @ 5:5a49956df427 database-connection-manager
LTPDAPreferences panel for new LTPDADatabaseConnectionManager
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% TIMEAVERAGE Averages time series intervals %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: Averages time series intervals and return a reduced time % series where each point represents the average of a stretch of data. % Despite the name this method can perform some different operations on the % data stretches or apply a user supplied function. Different functions can % be applied to X and Y data. % % CALL: BS = timeaverage(A1, A2, A3, ..., PL) % % INPUTS: AN - time series AOs % PL - parameters list % % OUTPUTS: BS - array of AOs % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'timeaverage')">Parameters Description</a> % % EXAMPLES: % % >> times = [ 0 100 200 300 400 500 ] % >> timeaverage(a, plist('times', times)) % >> timeaverage(a, plist('start', 0, 'duration', 100, 'decay', 10, 'repetitions', 3)) % >> timeaverage(a, plist('times', times, 'function', 'center')) % >> timeaverage(a, plist('times', times, 'function', @mean)) % >> timeaverage(a, plist('times', times, 'xfunction', @min, 'yfunction', @mean)) % % NOTES: The intervals are defined as ti <= x < te where ti is the start % time and te is the end time of each interval. If not specified the TIMES % vector is constructed from other parameters using the following schema % repeated accordingly a number of times specified with the REPETITIONS % parameter. % % settling duration decay settling duration % |------------|##############|---------|------------|##############|--- % START % % % VERSION: $Id: timeaverage.m,v 1.10 2011/05/16 09:31:35 mauro Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = timeaverage(varargin) % check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % decide on a deep copy or a modify bs = copy(as, nargout); % accept spaces dashes or underscores pl = fixpnames(pl); % combine plists pl = combine(pl, getDefaultPlist()); % splitting by time takes the precedence times = find(pl, 'times'); % otherwise construct a times vector based on other parameters if isempty(times) start = find(pl, 'start', find(pl, 'start time')); repeat = find(pl, 'repetitions'); duration = find(pl, 'duration'); settling = find(pl, 'settling', find(pl, 'settling time')); decay = find(pl, 'decay', find(pl, 'decay time')); times = zeros(repeat*2, 1); for kk = 1:repeat times(2*kk-1) = start + settling*kk + duration*(kk-1) + decay*(kk-1); times(2*kk) = start + settling*kk + duration*kk + decay*(kk-1); end end % check that the times vector as the right dimensions if mod(numel(times), 2) error('### times defines times intervals with an even number of points'); end % select which functions to apply to the data stretches method = lower(find(pl, 'method')); funct = find(pl, 'function'); if isempty(funct) funct = method; end xfunct = find(pl, 'xfunction', funct); yfunct = find(pl, 'yfunction', funct); if isempty(xfunct) xfunct = funct; end if isempty(yfunct) yfunct = funct; end % loop over input AOs for jj = 1:numel(bs) % check input data if ~isa(bs(jj).data, 'tsdata') warning('LTPDA:isNotTsdata', '!!! %s is not a tsdata AO and will be ingnored', bs(jj).name); continue; end [xmean, ymean, dy] = split_and_apply(bs(jj).x, bs(jj).y, times, xfunct, yfunct); % assign values bs(jj).setXY(xmean, ymean); bs(jj).setDy(dy); % set name bs(jj).name = sprintf('%s(%s)', mfilename, ao_invars{jj}); % add history bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); end % loop over analysis objects % set output if nargout == numel(bs) % list of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % single output varargout{1} = bs; end end function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: timeaverage.m,v 1.10 2011/05/16 09:31:35 mauro Exp $', sets, pl); % set the default property of the method as modifier or not ii.setModifier(true); % set the minumum number of inputs and outputs for the block ii.setArgsmin(1); ii.setOutmin(1); end function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist; % method p = param({'method','Reduction method to apply to data stretches.'}, ... {1, {'MEAN', 'MEDIAN', 'MAX', 'MIN', 'RMS', 'CENTER'}, paramValue.SINGLE}); pl.append(p); % function p = param({'function', ['Function to apply to data stretches. It can be' ... ' a function name or a function handle to a function that accepts'... ' a vector and returns a scalar.']}, paramValue.EMPTY_DOUBLE); pl.append(p); % x function p = param({'xfunction', ['Function to apply to X data stretches. It can be' ... ' a function name or a function handle to a function that accepts'... ' a vector and returns a scalar.']}, paramValue.EMPTY_DOUBLE); pl.append(p); % y function p = param({'yfunction', ['Function to apply to Y data stretches. It can be' ... ' a function name or a function handle to a function that accepts'... ' a vector and returns a scalar.']}, paramValue.EMPTY_DOUBLE); pl.append(p); % times p = param({'times', 'An array of start-stop times to split by.'}, paramValue.DOUBLE_VALUE([])); pl.append(p); % start time p = param({'start time', 'Start time of the measurement.'}, paramValue.DOUBLE_VALUE(0)); pl.append(p); % duration p = param({'duration', 'Duration of each cicle.'}, paramValue.DOUBLE_VALUE(0)); pl.append(p); % repetitions p = param({'repetitions', 'Number of cycles.'}, paramValue.DOUBLE_VALUE(1)); pl.append(p); % settling time p = param({'settling time', 'Settling time in each cicle.'}, paramValue.DOUBLE_VALUE(0)); pl.append(p); % decay time p = param({'decay time', 'Decay time in each cicle.'}, paramValue.DOUBLE_VALUE(0)); pl.append(p); end function pl = fixpnames(pl) % replace underscores and dashes in parameters names with spaces if isa(pl, 'plist') for ii = 1:pl.nparams pl.params(ii).setKey(strrep(strrep(pl.params(ii).key, '_', ' '), '-', ' ')); end end end function xmean = center(x) %#ok<DEFNU> % computes the center of an interval defined by % the minimum and maximum values in an array xmean = mean([min(x) max(x)]); end function [xmean, ymean, dy] = split_and_apply(x, y, times, xfunct, yfunct) % number of intervals nint = numel(times) / 2; xmean = zeros(nint, 1); ymean = zeros(nint, 1); % for the mean we are able to compute uncertainty too if ischar(yfunct) && strcmp(yfunct, 'mean') dy = zeros(nint, 1); else dy = []; end % loop over the intervals for kk = 1:nint % create index of the interval is = times(2*kk-1); ie = times(2*kk); idx = x >= is & x < ie; % apply functions to interval xmean(kk) = feval(xfunct, x(idx)); ymean(kk) = feval(yfunct, y(idx)); if ~isempty(dy) % compute uncertainty as the standard deviation of the mean dy(kk) = std(y(idx)) / sqrt(length(x(idx))); end end end