line source
+ − % EQMOTION solves numerically a given linear equation of motion
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % DESCRIPTION: EQMOTION solves numerically a given linear equation
+ − % of motion:
+ − % d^2 x dx
+ − % F(t) = alpha2 ------- + alpha1 ------ + alpha0 (x-x0)
+ − % dt^2 dt
+ − %
+ − % CALL: eqmotion(a)
+ − % b = eqmotion(a,pl)
+ − %
+ − % INPUTS: a - analysis object(s) containing data as a function of
+ − % time.
+ − % pl - parameter list containing input parameters.
+ − %
+ − % OUTPUTS: b - analysis object(s) containing output data as a function
+ − % of time.
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('ao', 'eqmotion')">Parameters Description</a>
+ − %
+ − % NOTE: Derivative estimation is performed with the parabolic fit
+ − % approximation by default [1, 2]. Try to change D#COEFF to use another
+ − % method. D0COEFF is used to calculate a five point data smoother to be
+ − % applied to the third term at the second member of the equation above. If
+ − % you do not whant to smooth data (before the multiplication with alpha0)
+ − % you have to input NaN for D0COEFF.
+ − % See also help for ao/diff and utils.math.fpsder.
+ − %
+ − % REFERENCES:
+ − % [1] L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative
+ − % estimation in LISA Pathfinder data reduction, Class. Quantum Grav.,
+ − % 7th LISA Symposium special issue.
+ − % [2] L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative
+ − % estimation in LISA Pathfinder data reduction
+ − % http://arxiv.org/abs/0903.0324v1
+ − %
+ − % VERSION: $Id: eqmotion.m,v 1.13 2011/04/11 10:24:45 mauro Exp $
+ − %
+ − % SEE ALSO: ao/diff, utils.math.fpsder
+ − %
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − function varargout = eqmotion(varargin)
+ −
+ − % Check if the method was called by another method
+ − callerIsMethod = utils.helper.callerIsMethod;
+ −
+ − %%% Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − %%% Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − %%% Collect all AOs
+ − [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
+ − pli = utils.helper.collect_objects(varargin(:), 'plist', in_names);
+ −
+ − %%% Decide on a deep copy or a modify
+ − %%% REMARK: If you create a new AO (call the constructor) then
+ − %%% it is not necessay to copy the input-AOs !!!!!!!!!!!!!!!!!!!!!!!!!
+ − bs = copy(as, nargout);
+ −
+ − %%% Combine plists
+ − pl = combine(pli, getDefaultPlist);
+ −
+ − %%% Get Parameters
+ − alpha0 = find(pl,'ALPHA0');
+ − alpha1 = find(pl,'ALPHA1');
+ − alpha2 = find(pl,'ALPHA2');
+ − X0 = find(pl,'X0');
+ − d0c = find(pl,'D0COEFF');
+ − d1c = find(pl,'D1COEFF');
+ − d2c = find(pl,'D2COEFF');
+ − tunits = find(pl,'TARGETUNITS');
+ −
+ − % check if the params are AOs
+ − if ~isa(tunits,'unit')
+ − tunits = unit(tunits);
+ − end
+ − if ~isa(alpha0,'ao')
+ − alpha0 = cdata(alpha0);
+ − alpha0.setYunits(tunits./unit(as.yunits));
+ − alpha0 = ao(alpha0);
+ − alpha0.simplifyYunits;
+ − end
+ − if ~isa(alpha1,'ao')
+ − alpha1 = cdata(alpha1);
+ − alpha1.setYunits(tunits.*unit('s')./unit(as.yunits));
+ − alpha1 = ao(alpha1);
+ − alpha1.simplifyYunits;
+ − end
+ − if ~isa(alpha2,'ao')
+ − alpha2 = cdata(alpha2);
+ − alpha2.setYunits(tunits.*(unit('s').^2)./unit(as.yunits));
+ − alpha2 = ao(alpha2);
+ − alpha2.simplifyYunits;
+ − end
+ − if ~isa(X0,'ao')
+ − if isempty(X0)
+ − X0 = cdata(0);
+ − X0.setYunits(as.yunits);
+ − X0 = ao(X0);
+ − else
+ − X0 = cdata(X0);
+ − X0.setYunits(as.yunits);
+ − X0 = ao(X0);
+ − end
+ − end
+ − if isa(d0c,'ao')
+ − d0c = d0c.data.y;
+ − end
+ − if isa(d1c,'ao')
+ − d1c = d1c.data.y;
+ − end
+ − if isa(d2c,'ao')
+ − d2c = d2c.data.y;
+ − end
+ −
+ − %%% go through analysis objects
+ − for kk = 1:numel(bs)
+ −
+ − %%% Calculate derivatives
+ − if ~isnan(d0c) % do the smoothing
+ − a0 = diff(bs(kk),plist('method', 'FPS', 'ORDER', 'ZERO', 'COEFF', d0c));
+ − else
+ − a0 = copy(bs(kk),1); % just use input data as they are
+ − end
+ − a1 = diff(bs(kk),plist('method', 'FPS', 'ORDER', 'FIRST', 'COEFF', d1c));
+ − a2 = diff(bs(kk),plist('method', 'FPS', 'ORDER', 'SECOND', 'COEFF', d2c));
+ −
+ − %%% Calculate Force
+ − b0 = (a0 - X0);
+ − b0 = b0*alpha0;
+ − b1 = a1*alpha1;
+ − b2 = a2*alpha2;
+ − bs(kk) = b2 + b1 + b0;
+ − % simplify units
+ − bs(kk).simplifyYunits(plist('prefixes', false));
+ −
+ − %%% Set Name
+ − bs(kk).name = sprintf('eqmotion(%s)', ao_invars{kk});
+ −
+ − if ~callerIsMethod
+ − %%% Set Name
+ − bs(kk).name = sprintf('eqmotion(%s)', ao_invars{kk});
+ − %%% Add History
+ − bs(kk).addHistory(getInfo('None'), pl, ao_invars(kk), [as.hist(kk)]);
+ − end
+ −
+ −
+ − end
+ −
+ − %%% Output
+ − if nargout == numel(bs)
+ − % List of outputs
+ − for ii = 1:numel(bs)
+ − varargout{ii} = bs(ii);
+ − end
+ − else
+ − % Single output
+ − varargout{1} = bs;
+ − end
+ −
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − else
+ − sets = {'Default'};
+ − pl = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: eqmotion.m,v 1.13 2011/04/11 10:24:45 mauro Exp $', sets, pl);
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function plout = getDefaultPlist()
+ − persistent pl;
+ − if exist('pl', 'var')==0 || isempty(pl)
+ − pl = buildplist();
+ − end
+ − plout = pl;
+ − end
+ −
+ − function pl = buildplist()
+ − pl = plist();
+ −
+ − % ALPHA0
+ − p = param({'ALPHA0','Zero order coefficient. Input a cdata ao with the proper units or a number.'}, ...
+ − {1, {0}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − % ALPHA1
+ − p = param({'ALPHA1','First order coefficient. Input a cdata ao with the proper units or a number.'},...
+ − {1, {0}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − % ALPHA2
+ − p = param({'ALPHA2','Second order coefficient. Input a cdata ao with the proper units or a number.'}, ...
+ − {1, {0}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − % X0
+ − p = param({'X0','Data offset. Input a cdata ao with the proper units or a number.'}, ...
+ − {1, {0}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − % D0COEFF
+ − p = param({'D0COEFF','Data smoother coefficient.'}, ...
+ − {1, {-3/35}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − % D1COEFF
+ − p = param({'D1COEFF','First derivative coefficient.'}, ...
+ − {1, {-1/5}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − % D2COEFF
+ − p = param({'D2COEFF','Second derivative coefficient.'}, ...
+ − {1, {2/7}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − % Target units
+ − p = param({'TARGETUNITS','Set this parameter if you input just numbers for the ALPHA# coefficients.'}, ...
+ − {1, {'N'}, paramValue.OPTIONAL});
+ − pl.append(p);
+ −
+ − end
+ − % END
+ −