Mercurial > hg > ltpda
view m-toolbox/classes/@ao/spsdSubtraction.m @ 19:69e3d49b4b0c database-connection-manager
Update ltpda_uo.fromRepository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% SPSDSUBTRACTION makes a sPSD-weighted least-square iterative fit %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: SPSDSUBTRACTION makes a sPSD-weighted least-square iterative fit % % CALL: [MPest, plOut, aoResiduum, aoP, aoPini] = spsdSubtraction(ao_Y, [ao_U1, ao_U2, ao_U3 ...]); % [MPest, plOut, aoResiduum, aoP, aoPini] = spsdSubtraction(ao_Y, [ao_U1, ao_U2, ao_U3 ...], pl); % % The function finds the optimal M that minimizes the sum of the weighted sPSD of % (ao_Y - M * [ao_U1 ao_U2 ao_U3 ...] ) % if ao_Y is a vector of aos, the use the matrix/spsdSubtraction is % advised % % OUTPUTS: - MPest: output PEST object with parameter estimates % - aoResiduum: residuum times series % - plOut: plist containing data like the parameter estimates % - aoP: last weight used in the optimization (fater last % Maximization/Expectation step) % - aoPini: initial weight used in the optimization (before first % Maximization/Expectation step) % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'spsdSubtraction')">Parameters Description</a> % % VERSION : $Id: spsdSubtraction.m,v 1.6 2011/08/03 19:21:10 adrien Exp $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = spsdSubtraction(varargin) % use the caller is method flag callerIsMethod = utils.helper.callerIsMethod; % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end if ~nargin>1 error('optSubtraction requires at least the two input aos as first and second entries') end %% retrieving the two input aos [aos_in, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); aosY = varargin{1}; aosU = varargin{2}; if (~isa(aosY, 'ao')) || (~isa(aosU, 'ao')) error('first two inputs should be two ao-arrays involved in the subtraction') end % Collect plist pl = utils.helper.collect_objects(varargin(:), 'plist'); % Get default parameters pl = combine(pl, getDefaultPlist); %% checking data sizes NY = numel(aosY); if NY==0 error('Nothing to subtract to!') end NU = size(aosU,2); if NU==0 error('Nothing to subtract!') end if ~(size(aosY,2)==1) error('The input ao Y array should be a column vector') end if ~(size(aosU,1)==NY) error('The fields ''subtracted'' should be an array of aos with the height of numel(initial)') end %% collecting history if callerIsMethod % we don't need the history of the input else inhist = [aosY(:).hist aosU(:).hist]; end %% retrieving general quantities ndata = numel(aosY(1).y); Ts = 1/aosY(1).fs; nFreqs = floor(ndata/2); freqs = 1/(2*Ts) * linspace(0,1,nFreqs); %% produce window Win = find(pl, 'Win'); if isa(Win, 'plist') Win = ao( combine(plist( 'length', ndata), Win) ); W = Win.y; elseif isa(Win, 'ao') if ~isa(Win.data, 'tsdata') error('An ao window should be a time series') end W = Win.y; if ~length(W)==ndata error('signals and windows don''t have the same length') end else error('input option Win is not acceptable (not a plist nor an ao)!') end %% get initial M coefficient matrix M = pl.find('coefs'); if isempty(M) M = zeros(1,NU); end %% get criterion thinness linCoef = pl.find('lincoef'); logCoef = pl.find('logcoef'); %% getting the input data Y and taking FFT Y = zeros(NY, nFreqs); YLocNorm = zeros(NY,1); for ii=1:NY if isempty(aosY(ii).data) error('One ao for Y is empty!') end if ~(length(aosY(ii).y)==ndata) error('various Y vectors do not have the same length') end yLoc = fft(aosY(ii).y .* W, ndata); YLocNorm(ii) = norm(aosY(ii).y .* W)/sqrt(ndata); Y(ii,:) = yLoc(1:nFreqs)/YLocNorm(ii); end %% getting the data U norm ULocNorm = zeros(NY,NU); for iU=1:NU for iY=1:NY if ~isempty(aosU(iY,iU).data) ULocNorm(iY,iU,:) = norm(aosU(iY,iU).y .* W)/sqrt(ndata); end end end ULocNorm = max(ULocNorm,[],1); %% getting the input data U and taking FFT U = zeros(NY,NU, nFreqs); for iY=1:NY for iU=1:NU if ~isempty(aosU(iY,iU).data) if ~(length(aosU(iY,iU).y)==ndata) error('various U vectors do not have the same length as Y') end uLoc = fft(aosU(iY,iU).y .* W, ndata); U(iY,iU,:) = uLoc(1:nFreqs)/ (YLocNorm(iY) * ULocNorm(iU)); end end end %% getting the weight powAvgWeight weightingMethod =pl.find('weightingMethod'); switch lower(weightingMethod) case 'pzmodel' weightModel =pl.find('pzmodelWeight'); if numel(weightModel)~=NY error('there should be as many pzmodels as weighted entries') end for ii=1:NY weight = weightModel(ii).resp(freqs); weight = abs(weight).^2; pow = [0 ; weight.y(2:nFreqs)]; [freqsAvg, powAvgs, nFreqsAvg, nDofs, binningMatrix] = ltpda_spsd(freqs, pow, linCoef, logCoef); powAvgWeight(ii,:) = powAvgs; %#ok<AGROW> end case 'ao' weight = pl.find('aoWeight'); if numel(weight)~=NY error('there should be as many AOs as weighted entries') end for ii=1:NY if ~isa(weight(ii).data, 'fsdata') error('if weight is an ao, it should be a FSdata') elseif length(weight(ii).y)~=nFreqs error(['length of FS weight is not length of the FFT vector : ' num2str(length(weight(ii).y)) ' instead of ' num2str(nFreqs)]) else pow = weight(ii).y; [freqsAvg, powAvgs, nFreqsAvg, nDofs, binningMatrix] = ltpda_spsd(freqs, pow, linCoef, logCoef); powAvgWeight(ii,:) = powAvgs; %#ok<AGROW> %% add unit check here!! end end case 'residual' [freqsAvg, powAvgWeight, nFreqsAvg, nDofs, binningMatrix] = computeWeight(Y, M, U, freqs, linCoef, logCoef); otherwise error('weighting method requested does not exist!') end powAvgInv = (powAvgWeight.*(nFreqsAvg.')./(nDofs.')).^-1; %% get ME iterations termination conditions iterMax = pl.find('iterMax'); normCoefs = pl.find('normCoefs'); normCriterion = pl.find('normCriterion'); %% Maximization Expectation iterations loop for i_iter = 1:iterMax utils.helper.msg(utils.const.msg.PROC3, ['starting iteration ', num2str(i_iter)]); %% initializing history if i_iter==1 % storing intial weight Pini = powAvgWeight; MHist(1,:) = reshape(M, [1, numel(M)] ); end fValIni = optimalCriterion(Y, M, U, powAvgInv, linCoef, logCoef); %% solving LSQ problem [M, hessian] = solveProblem(M, Y, U, powAvgInv, nFreqsAvg, binningMatrix); fval = optimalCriterion(Y, M, U, powAvgInv, linCoef, logCoef); %% store history fValHist(i_iter) = fval/fValIni; %#ok<AGROW> MHist(i_iter+1,:) = reshape(M, [1, numel(M)] ); %#ok<AGROW> %% updating weight, recomputing residuum power [freqsAvg, powAvgWeight, nFreqsAvg, nDofs] = computeWeight(Y, M, U, freqs, linCoef, logCoef); powAvgInv = (powAvgWeight.*(nFreqsAvg.')./(nDofs.')).^-1; %% deciding whether to pursue or not ME iterations if strcmpi( weightingMethod, 'pzmodel') display('One iteration for Pzmodel weighting only') break elseif strcmpi( weightingMethod, 'ao') display('One iteration for ao weighting only') break elseif norm(fValHist(i_iter)-1) < normCriterion && norm(MHist(i_iter+1,:)-MHist(i_iter,:))<normCoefs display(['Iterations stopped at iteration ' num2str(i_iter) ' because not enough progress was made (see parameter "normCriterion" and "normCoefs")']) break elseif i_iter == iterMax display(['Iterations stopped at maximum number of iterations ' num2str(i_iter) ' (see parameter "iterMax")']) break end end %% creating output pest MVals = M * diag( ULocNorm.^-1 ); MStd = diag(diag(ULocNorm) * hessian * diag(ULocNorm)).^-0.5; MCov = diag(ULocNorm)^-1 * hessian^-1 * diag(ULocNorm)^-1; % prepare model, units, names model = []; for jj = 1:NU names{jj} = ['U' num2str(jj)]; %#ok<AGROW> units{jj} = aosY(1).yunits / aosU(1,jj).yunits; %#ok<AGROW> xunits{jj} = aosU(1,jj).yunits; %#ok<AGROW> MNames{jj} = ['M' num2str(jj)]; %#ok<AGROW> if jj == 1 model = ['M' num2str(jj) '*U' num2str(jj)]; else model = [model ' + M' num2str(jj) '*U' num2str(jj)]; %#ok<AGROW> end end model = smodel(plist('expression', model, ... 'params', MNames, ... 'values', MVals.', ... 'xvar', names, ... 'xunits', xunits, ... 'yunits', aosY(1).yunits ... )); % collect inputs names argsname = aosY(1).name; for jj = 1:numel(NU) argsname = [argsname ',' aosU(jj).name]; end % Build the output pest object MPest = pest; MPest.setY( MVals.' ); MPest.setDy(MStd); MPest.setCov(MCov); MPest.setChi2(0); MPest.setNames(names{:}); MPest.setYunits(units{:}); MPest.setModels(model); MPest.name = sprintf('optSubtraction(%s)', argsname); % Set procinfo object MPest.procinfo = plist('MPsdE', 0); % Propagate 'plotinfo' plotinfo = [aosY(:).plotinfo aosU(:).plotinfo]; if ~isempty(plotinfo) MPest.plotinfo = combine(plotinfo); end %% creating output plist plOut = plist; p = param({ 'criterion' , 'last value of the criterion in the last optimization'}, fval ); plOut.append(p); p = param({ 'M' , 'Best fitting value'}, MVals ); plOut.append(p); p = param({ 'Mhist' , 'History of the best fit, through iteration'}, MHist * diag( ULocNorm.^-1 ) ); plOut.append(p); p = param({ 'fValHist' , 'History of the criterion value, through iteration'}, fValHist ); plOut.append(p); p = param({ 'hessian' , 'fitting hessian'}, diag(ULocNorm) * hessian * diag(ULocNorm) ); plOut.append(p); %add history and use Mdata/Pest instead %% creating aos for the weights used if nargout>2 aoP = ao.initObjectWithSize(NY, 1); aoPini = ao.initObjectWithSize(NY, 1); for ii=1:NY aoP(ii).setData(fsdata( freqsAvg, YLocNorm(ii)^2 * powAvgWeight(ii,:) )); aoP(ii).setName('final weight'); aoP(ii).setXunits('Hz'); aoP(ii).setYunits(aosY(ii).yunits^2 * unit('Hz^-1')); aoP(ii).setDescription(['final weight in the channel "' aosY(ii).name '"']); aoP(ii).setT0(aosY(ii).t0); aoPini(ii).setData(fsdata( freqsAvg, YLocNorm(ii)^2 * Pini(ii,:) )); aoPini(ii).setName('initial weight'); aoPini(ii).setXunits('Hz'); aoPini(ii).setYunits(aosY(ii).yunits^2 * unit('Hz^-1')); aoPini(ii).setDescription(['initial weight in the channel "' aosY(ii).name '"']); aoPini(ii).setT0(aosY(ii).t0); end end %% creating residuum time-series if nargout>2 aoResiduum = ao.initObjectWithSize(NY,1); for ii=1:NY aoResiduumValue = aosY(ii).y; for jj = 1:NU aoResiduumValue = aoResiduumValue - MVals(jj)*aosU(ii,jj).y; end aoResiduum(ii).setData(tsdata( aoResiduumValue, aosY(ii).fs )); aoResiduum(ii).setName(['residual in the channel "' aosY(ii).name '"' ]); aoResiduum(ii).setXunits('s'); aoResiduum(ii).setYunits(aosY(ii).yunits); aoResiduum(ii).setDescription(['residual corresponding to "' aosY(ii).description '"' ]); aoResiduum(ii).setT0(aosY(ii).t0); end end %% adding history if callerIsMethod % we don't need to set the history else MPest.addHistory(getInfo('None'), pl, ao_invars, inhist); if nargout>2 for ii=1:NY aoP(ii).addHistory(getInfo('None'), pl, ao_invars, inhist); aoPini(ii).addHistory(getInfo('None'), pl, ao_invars, inhist); aoResiduum(ii).addHistory(getInfo('None'), pl, ao_invars, inhist); end end end %% return coefficients and hessian and Jfinal and powAvgWeight if nargout>2 varargout = {MPest, plOut, aoResiduum, aoP, aoPini}; else varargout = {MPest, plOut}; end end %% weight for optimal criterion function [freqsAvg, powAvgWeight, nFreqsAvg, nDofs, binningMatrix] = computeWeight(Y, M, U, freqs, linCoef, logCoef) errDft = subtraction( Y, M, U); errPow = real(errDft).^2 + imag(errDft).^2; for ii=1:size(errDft,1) [freqsAvg, powAvgs, nFreqsAvg, nDofs, binningMatrix] = ltpda_spsd(freqs, errPow, linCoef, logCoef); powAvgWeight(ii,:) = powAvgs; %#ok<AGROW> end end %% optimal criterion function j = optimalCriterion(Y, M, U, powAvgInv, linCoef, logCoef) errDft = subtraction(Y, M, U); errPow = real(errDft).^2 + imag(errDft).^2; j = 0; for ii=1:size(errDft,1) [freqsAvg, powAvgs, nFreqsAvg, nDofs] = ltpda_spsd([], errPow, linCoef, logCoef); %#ok<ASGLU> powSum = powAvgs .* nDofs; % binning frequencies as in sPSD j = j + sum( powSum .* powAvgInv(:,ii) ); % alpha = 4; % logProbaDensityFactor = - nFreqsAvg * log(2) - gammaln(nFreqsAvg); % normlzChi2Sum = ((alpha*2)*powSum) .* powAvgInv(:,ii); % divide the sum by the expected average of each terms, so the chi2 is normalized % logProbaDensities = logProbaDensityFactor + (nFreqsAvg-1).*log(normlzChi2Sum) - normlzChi2Sum/2 ; % here computing log of probability % j = j - sum(logProbaDensities); % better than taking product of probabilities end end %% time-series subtraction function function Y = subtraction( Y, M, U) ndata = size(Y,2); for ii=1:size(Y,1) for j=1:numel(M) Y(ii,:) = Y(ii,:) - reshape( M(j)*U(ii,j,:) , [1,ndata] ); end end end %% Direct solver function [M, hessian] = solveProblem(M, Y, U, powAvgInv, nFreqsAvg, binningMatrix) errDft = subtraction(Y, M, U); NU = size(U,2); NFreqs = size(binningMatrix,2); ATB = zeros(NU,1); ATA = zeros(NU,NU); % matrix for frequency binning & Weighting & Summing : matBSW = powAvgInv * binningMatrix; for iiParam = 1:NU Uii = reshape(U(1,iiParam,:), [1 NFreqs]); ATB(iiParam) = 2 * ( matBSW * real( Uii .* conj(errDft) ).' ); for jjParam = 1:NU Ujj = reshape(U(1,jjParam,:), [1 NFreqs]); ATA(iiParam,jjParam) = 2 * ( matBSW * real( Uii .* conj(Ujj) ).' ); end end try MUpdate = ATA^-1 * ATB; M = M + MUpdate.'; catch warning('Numerical accuracy limited the number of iterations') end hessian = ATA; end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.op, '$Id: spsdSubtraction.m,v 1.6 2011/08/03 19:21:10 adrien Exp $', sets, pl); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist; % initial coefficients for subtraction initialization p = param({ 'coefs' , 'initial subtracted coefficients, must be a nY*nU double array. If not provided zeros are assumed'}, [] ); pl.append(p); % weighting scheme p = param({ 'weightingMethod' , 'choose to define a frequency weighting scheme'}, {1, {'residual', 'ao', 'pzmodel'}, paramValue.SINGLE} ); pl.append(p); p = param({ 'aoWeight' , 'ao to define a frequency weighting scheme (if chosen in ''weightingMethod'')'}, ao.initObjectWithSize(0,0) ); pl.append(p); p = param({ 'pzmodelWeight' , 'pzmodel to define a frequency weighting scheme (if chosen in ''weightingMethod'')'}, pzmodel.initObjectWithSize(0,0) ); pl.append(p); p = param({ 'lincoef' , 'linear coefficient for scaling frequencies in chi2'}, 5 ); pl.append(p); p = param({ 'logcoef' , 'logarithmic coefficient for scaling frequencies in chi2'}, 0.3 ); pl.append(p); % iterations convergence stop criterion p = param({ 'iterMax' , 'max number of Mex/Exp iterations'}, 20 ); pl.append(p); p = param({ 'normCoefs' , 'tolerance on inf norm of coefficient update (used depending on ''CVCriterion'')'}, 1e-15 ); pl.append(p); p = param({ 'normCriterion' , 'tolerance on norm of criterion variation (used depending on ''CVCriterion'')'}, 1e-15 ); pl.append(p); % windowing options p = param({ 'win' , 'window to operate FFT, may be a plist/ao'}, plist('win', 'levelledHanning', 'PSLL', 200, 'levelOrder', 4 ) ); pl.append(p); % display p = param({ 'display' , 'choose how much to display of the optimizer output'}, {1, {'off', 'iter', 'final'}, paramValue.SINGLE} ); pl.append(p); % optimizer options p = param({ 'maxcall' , 'maximum number of calls to the criterion function'}, 5000 ); pl.append(p); end