Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/sigproc_diff_content.html @ 19:69e3d49b4b0c database-connection-manager
Update ltpda_uo.fromRepository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
<!-- $Id: sigproc_diff_content.html,v 1.10 2011/04/05 08:12:13 hewitson Exp $ --> <!-- ================================================== --> <!-- BEGIN CONTENT FILE --> <!-- ================================================== --> <!-- ===== link box: Begin ===== --> <p> <table border="1" width="80%"> <tr> <td> <table border="0" cellpadding="5" class="categorylist" width="100%"> <colgroup> <col width="37%"/> <col width="63%"/> </colgroup> <tbody> <tr valign="top"> <td> <a href="#description">Description</a> </td> <td>Discrete derivative estimation in LTPDA.</td> </tr> <tr valign="top"> <td> <a href="#algorithm">Algorithm</a> </td> <td>Derivatives Algorithms.</td> </tr> <tr valign="top"> <td> <a href="#examples">Examples</a> </td> <td>Usage examples of discrete derivative estimation tools.</td> </tr> <tr valign="top"> <td> <a href="#references">References</a> </td> <td>Bibliographic references.</td> </tr> </tbody> </table> </td> </tr> </table> </p> <!-- ===== link box: End ====== --> <p> </p> <h2><a name="description">Derivative calculation for dicrete data series</a></h2> <p> Derivative estimation on discrete data series is implemented by the function <a href="matlab:doc('ao/diff')">ao/diff</a>. This function embeds several algorithms for the calculation of zero, first and second order derivative. Where with zero order derivative we intend a particular category of data smoothers [1]. </p> <h2><a name="algorithm">Algorithm</a></h2> <p> <table cellspacing="0" class="body" cellpadding="2" border="0" width="80%"> <colgroup> <col width="15%"/> <col width="85%"/> </colgroup> <thead> <tr valign="top"> <th class="categorylist">Method</th> <th class="categorylist">Description</th> </tr> </thead> <tbody> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><span class="string">'2POINT'</span></p> </td> <td bgcolor="#f3f4f5"> <p> Compute first derivative with two point equation according to: <div align="center"> <IMG src="images/sigproc_diff_algo01.gif" align="center" border="0"> </div> </p> </td> </tr> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><span class="string">'3POINT'</span></p> </td> <td bgcolor="#f3f4f5"> <p> Compute first derivative with three point equation according to: <div align="center"> <IMG src="images/sigproc_diff_algo02.gif" align="center" border="0"> </div> </p> </td> </tr> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><span class="string">'5POINT'</span></p> </td> <td bgcolor="#f3f4f5"> <p> Compute first derivative with five point equation according to: <div align="center"> <IMG src="images/sigproc_diff_algo03.gif" align="center" border="0"> </div> </p> </td> </tr> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><span class="string">'FPS'</span></p> </td> <td bgcolor="#f3f4f5"> <p> Five Point Stencil is a generalized method to calculate zero, first and second order discrete derivative of a given time series. Derivative approximation, at a given time <i>t = kT</i> (<i>k</i> being an integer and <i>T</i> being the sampling time), is calculated by means of finite differences between the element at <i>t</i> with its four neighbors: <div align="center"> <IMG src="images/sigproc_diff_algo04.gif" align="center" border="0"> </div> </p> <p> It can be demonstrated that the coefficients of the expansion can be expressed as a function of one of them [1]. This allows the construction of a family of discrete derivative estimators characterized by a good low frequency accuracy and a smoothing behavior at high frequencies (near the nyquist frequency). <br/> Non-trivial values for the <span class="string">'COEFF'</span> parameter are: <ul> <li> Parabolic fit approximation <br/> These coefficients can be obtained by a parabolic fit procedure on a generic set of data [1]. <ul> <li> Zeroth order -3/35 <li> First order -1/5 <li> Second order 2/7 </ul> <li> Taylor series expansion <br/> These coefficients can be obtained by a series expansion of a generic set of data [1 - 3]. <ul> <li> First order 1/12 <li> Second order -1/12 </ul> <li> PI <br/> This coefficient allows to define a second derivative estimator with a notch feature at the nyquist frequency [1]. <ul> <li> Second order 1/4 </ul> </ul> </p> </td> </tr> </tbody> </table> </p> <h2><a name="examples"></a>Examples</h2> Consider <tt>a</tt> as a time series analysis object. First and second derivative of <tt>a</tt> can be easily obtained with a call to <a href="matlab:doc('ao/diff')">diff</a>. Please refer to <a href="matlab:doc('ao/diff')">ao/diff</a> documantation page for the meaning of any parameter. <p> Frequency response of first and second order estimators is reported in figures 1 and 2 respectively. </p> <h3>First derivative</h3> <div class="fragment"><pre> pl = plist(... <span class="string">'method'</span>, <span class="string">'2POINT'</span>); b = diff(a, pl); pl = plist(... <span class="string">'method'</span>, <span class="string">'ORDER2SMOOTH'</span>); c = diff(a, pl); pl = plist(... <span class="string">'method'</span>, <span class="string">'3POINT'</span>); d = diff(a, pl); pl = plist(... <span class="string">'method'</span>, <span class="string">'5POINT'</span>); e = diff(a, pl); pl = plist(... <span class="string">'method'</span>, <span class="string">'FPS'</span>, ... <span class="string">'ORDER'</span>, <span class="string">'FIRST'</span>, ... <span class="string">'COEFF'</span>, -1/5); f = diff(a, pl); </pre></div> <h3>Second derivative</h3> <div class="fragment"><pre> pl = plist(... <span class="string">'method'</span>, <span class="string">'FPS'</span>, ... <span class="string">'ORDER'</span>, <span class="string">'SECOND'</span>, ... <span class="string">'COEFF'</span>, 2/7); b = diff(a, pl); pl = plist(... <span class="string">'method'</span>, <span class="string">'FPS'</span>, ... <span class="string">'ORDER'</span>, <span class="string">'SECOND'</span>, ... <span class="string">'COEFF'</span>, -1/12); c = diff(a, pl); pl = plist(... <span class="string">'method'</span>, <span class="string">'FPS'</span>, ... <span class="string">'ORDER'</span>, <span class="string">'SECOND'</span>, ... <span class="string">'COEFF'</span>, 1/4); d = diff(a, pl); </pre></div> <div align="center"> <p> <IMG src="images/sigproc_diff_algo05.png" align="center" border="0"> </p> <p> <b> Figure 1:</b> Frequency response of first derivative estimators. </p> </div> <div align="center"> <p> </p> <IMG src="images/sigproc_diff_algo06.png" align="center" border="0"> <p> <b> Figure 2:</b> Frequency response of second derivative estimators. </p> </div> <h2><a name="references">References</a></h2> <ol> <li> L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative estimation in LISA Pathfinder data reduction, <a href="matlab:web('http://www.iop.org/EJ/abstract/0264-9381/26/9/094013/','-browser')">Class. Quantum Grav. 26 (2009) 094013.</a>. <br/> L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative estimation in LISA Pathfinder data reduction <a href="matlab:web('http://arxiv.org/abs/0903.0324v1','-browser')">arXiv:0903.0324v1</a> <li> Steven E. Koonin and Dawn C. Meredith, Computational Physics, Westview Press (1990). <li> John H. Mathews, Computer derivations of numerical differentiation formulae, <i>Int. J. Math. Educ. Sci. Technol.<i>, 34:2, 280 - 287. </ol>