Mercurial > hg > ltpda
view m-toolbox/test/test_ao_xfit.m @ 19:69e3d49b4b0c database-connection-manager
Update ltpda_uo.fromRepository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% Tests for xfit % % $Id: test_ao_xfit.m,v 1.7 2011/05/12 07:58:57 mauro Exp $ % %% Case 1: Fit with function in plist % Fit to a frequency-series % Create a frequency-series datapl = plist('fsfcn', '0.01./(0.0001+f) + 5*abs(randn(size(f))) ', 'f1', 1e-5, 'f2', 5, 'nf', 1000, ... 'xunits', 'Hz', 'yunits', 'N/Hz'); data = ao(datapl); data.setName; % Do fit fitpl = plist('Function', 'P(1)./(P(2) + Xdata) + P(3)', ... 'P0', [0.1 0.01 1]); params = xfit(data, fitpl); % Evaluate model BestModel = eval(params, plist('type','fsdata','xdata',data,'xfield','x')); BestModel.setName; % Display results iplot(data,BestModel) %% Case 2: Fit with function in plist % Create a noisy sine-wave fs = 10; nsecs = 500; datapl = plist('waveform', 'Sine wave', 'f', 0.01, 'A', 0.6, 'fs', fs, 'nsecs', nsecs, ... 'xunits', 's', 'yunits', 'm'); sw = ao(datapl); noise = ao(plist('tsfcn', '0.01*randn(size(t))', 'fs', fs, 'nsecs', nsecs)); data = sw+noise; data.setName; % Do fit fitpl = plist('Function', 'P(1).*sin(2*pi*P(2).*Xdata + P(3))', ... 'P0', [1 0.01 0]); params = xfit(data, fitpl); % Evaluate model BestModel = eval(params, plist('type','tsdata','xdata',data,'xfield','x')); BestModel.setName; % Display results iplot(data,BestModel) %% Case 3: Fit with smodel % Fit an smodel of a straight line to some data % Create a noisy straight-line datapl = plist('xyfcn', '2.33 + 0.1*x + 0.01*randn(size(x))', 'x', 0:0.1:10, ... 'xunits', 's', 'yunits', 'm'); data = ao(datapl); data.setName; % Model to fit mdl = smodel('a + b*x'); mdl.setXvar('x'); mdl.setParams({'a', 'b'}, {1 2}); % Fit model fitpl = plist('Function', mdl, 'P0', [1 1]); params = xfit(data, fitpl); % Evaluate model BestModel = eval(params,plist('xdata',data,'xfield','x')); BestModel.setName; % Display results iplot(data,BestModel) %% Case 4: Fit with smodel: % Fit a chirp-sine firstly starting from an initial guess (quite close % to the true values) (bad convergency) and secondly by a Monte Carlo % search (good convergency) % Create a noisy chirp-sine fs = 10; nsecs = 1000; % Model to fit and generate signal mdl = smodel(plist('name', 'chirp', 'expression', 'A.*sin(2*pi*(f + f0.*t).*t + p)', ... 'params', {'A','f','f0','p'}, 'xvar', 't', 'xunits', 's', 'yunits', 'm')); % signal s = mdl.setValues({10,1e-4,1e-5,0.3}); s.setXvals(0:1/fs:nsecs-1/fs); signal = s.eval; signal.setName; % noise noise = ao(plist('tsfcn', '1*randn(size(t))', 'fs', fs, 'nsecs', nsecs)); % data data = signal + noise; data.setName; % Fit model from the starting guess fitpl_ig = plist('Function', mdl, 'P0',[8,9e-5,9e-6,0]); params_ig = xfit(data, fitpl_ig); % Evaluate model BestModel_ig = eval(params_ig,plist('xdata',data,'xfield','x')); BestModel_ig.setName; % Display results iplot(data,BestModel_ig) % Fit model by a Monte Carlo search fitpl_mc = plist('Function', mdl, ... 'MonteCarlo', 'yes', 'Npoints', 1000, 'LB', [8,9e-5,9e-6,0], 'UB', [11,3e-4,2e-5,2*pi]); params_mc = xfit(data, fitpl_mc); % Evaluate model BestModel_mc = eval(params_mc,plist('xdata',data,'xfield','x')); BestModel_mc.setName; % Display results iplot(data,BestModel_mc) %% Case 5: Fit multichannel with smodel % Ch.1 data datapl = plist('xyfcn', '0.1*x + 0.01*randn(size(x))', 'x', 0:0.1:10, 'name', 'channel 1', ... 'xunits', 'K', 'yunits', 'Pa'); a1 = ao(datapl); % Ch.2 data datapl = plist('xyfcn', '2.5*x + 0.1*sin(2*pi*x) + 0.01*randn(size(x))', 'x', 0:0.1:10, 'name', 'channel 2', ... 'xunits', 'K', 'yunits', 'T'); a2 = ao(datapl); % Model to fit mdl1 = smodel('a*x'); mdl1.setXvar('x'); mdl1.setParams({'a'}, {1}); mdl1.setXunits('K'); mdl1.setYunits('Pa'); mdl2 = smodel('b*x + a*sin(2*pi*x)'); mdl2.setXvar('x'); mdl2.setParams({'a','b'}, {1,2}); mdl2.setXunits('K'); mdl2.setYunits('T'); % Fit model params = xfit(a1,a2, plist('Function', [mdl1,mdl2])); % evaluate model b = eval(params, plist('index',1,'xdata',a1,'xfield','x')); b.setName('fit Ch.1'); r = a1-b; r.setName('residuals'); iplot(a1,b,r) b = eval(params, plist('index',2,'xdata',a2,'xfield','x')); b.setName('fit Ch.2'); r = a2-b; r.setName('residuals'); iplot(a2,b,r)