Mercurial > hg > ltpda
view m-toolbox/classes/@ao/lxspec.m @ 14:6d43f39633b8 database-connection-manager
Remove unused functions from utils.jmysql
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% LXSPEC performs log-scale cross-spectral analysis of various forms. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: LXSPEC performs log-scale cross-spectral analysis of various forms. % The function is a helper function for various higher level % functions. It is meant to be called from other functions % (e.g., ltfe). % % CALL: b = lxspec(a, pl, method, iALGO, iVER, invars); % % INPUTS: a - vector of input AOs % pl - input parameter list % method - one of % 'cpsd' - compute cross-spectral density % 'tfe' - estimate transfer function between inputs % 'mscohere' - estimate magnitude-squared cross-coherence % 'cohere' - estimate complex cross-coherence % mi - minfo object for calling method % invars - invars variable from the calling higher level script % % OUTPUTS: b - output AO % % VERSION: $Id: lxspec.m,v 1.44 2011/04/05 08:12:40 mauro Exp $ % % HISTORY: 16-05-2008 M Hewitson % Creation % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = lxspec(varargin) import utils.const.* % unpack inputs as = varargin{1}; pl = varargin{2}; method = varargin{3}; mi = varargin{4}; invars = varargin{5}; VERSION = '$Id: lxspec.m,v 1.44 2011/04/05 08:12:40 mauro Exp $'; % Set the method version string in the minfo object mi.setMversion([VERSION '-->' mi.mversion]); %----------------- Select all AOs with time-series data tsao = []; for ll=1:numel(as) if isa(as(ll).data, 'tsdata') tsao = [tsao as(ll)]; else warning('### xspec requires tsdata (time-series) inputs. Skipping AO %s. \nREMARK: The output doesn''t contain this AO', invars{ll}); end end % Check if there are some AOs left if numel(tsao) ~= 2 error('### LXSPEC needs two time-series AOs.'); end %----------------- Gather the input history objects inhists = [tsao(:).hist]; %----------------- Check the time range. time_range = mfind(pl, 'split', 'times'); for ll=1:numel(tsao) if ~isempty(time_range) switch class(time_range) case 'double' tsao(ll) = split(tsao(ll), plist(... 'times', time_range)); case 'timespan' tsao(ll) = split(tsao(ll), plist(... 'timespan', time_range)); case 'time' tsao(ll) = split(tsao(ll), plist(... 'start_time', time_range(1), ... 'end_time', time_range(2))); case 'cell' tsao(ll) = split(tsao(ll), plist(... 'start_time', time_range{1}, ... 'end_time', time_range{2})); otherwise end end if tsao(ll).len <= 0 error('### The object is empty! Please revise your settings ...'); end end copies = zeros(size(tsao)); %----------------- Resample all AOs fsmax = ao.findFsMax(tsao); fspl = plist(param('fsout', fsmax)); for ll = 1:numel(tsao) % Check Fs if tsao(ll).data.fs ~= fsmax utils.helper.msg(msg.PROC2, 'resampling AO %s to %f Hz', tsao(ll).name, fsmax); % Make a deep copy so we don't % affect the original input data tsao(ll) = copy(tsao(ll), 1); copies(ll) = 1; tsao(ll).resample(fspl); end end %----------------- Truncate all vectors % Get shortest vector lmin = ao.findShortestVector(tsao); nsecs = lmin / fsmax; for ll = 1:numel(tsao) if len(tsao(ll)) ~= lmin utils.helper.msg(msg.PROC1, 'truncating AO %s to %d secs', tsao(ll).name, nsecs); % do we already have a copy? if ~copies(ll) % Make a deep copy so we don't % affect the original input data tsao(ll) = copy(tsao(ll), 1); copies(ll) = 1; end tsao(ll).select(1:lmin); end end %----------------- Build signal Matrix N = len(tsao(1)); % length of first signal iS = zeros(numel(tsao), N); for jj = 1:numel(tsao) iS(jj,:) = tsao(jj).data.getY; end %----------------- check input parameters pl = utils.helper.process_spectral_options(pl, 'log'); % Desired number of averages Kdes = find(pl, 'Kdes'); % num desired spectral frequencies Jdes = find(pl, 'Jdes'); % Minimum segment length Lmin = find(pl, 'Lmin'); % Window function Win = find(pl, 'Win'); % Overlap Nolap = find(pl, 'Olap')/100; % Order of detrending Order = find(pl, 'Order'); %----------------- Get frequency vector [f, r, m, L, K] = ao.ltf_plan(lmin, fsmax, Nolap, 1, Lmin, Jdes, Kdes); %----------------- compute TF Estimates [Txy dev]= ao.mltfe(iS, f, r, m, L,K,fsmax, Win, Order, Nolap*100, Lmin, method); % Keep the data shape of the first AO if size(tsao(1).data.y, 1) == 1 f = f.'; Txy = Txy.'; dev = dev.'; end %----------------- Build output Matrix of AOs % create new output fsdata fsd = fsdata(f, Txy, fsmax); fsd.setXunits('Hz'); switch lower(method) case 'tfe' fsd.setYunits(tsao(2).data.yunits / tsao(1).data.yunits); case 'cpsd' fsd.setYunits(tsao(2).data.yunits * tsao(1).data.yunits / unit('Hz')); case {'cohere','mscohere'} fsd.setYunits(unit()); otherwise error(['### Unknown method:' method]); end % set object t0 if eq(tsao(1).t0, tsao(2).t0) fsd.setT0(tsao(1).t0); end % make output analysis object bs = ao(fsd); % add standard deviation to dy field bs.data.dy = dev; % simplify the units if strcmp(method, 'cpsd') bs.simplifyYunits(... plist('prefixes',false,'exceptions','Hz'),... 'internal'); end % set name bs.name = sprintf('L%s(%s->%s)', upper(method), invars{1}, invars{2}); % set procinfo bs.procinfo = combine(bs.procinfo,plist('r', r, 'm', m, 'l', L, 'k', K)); % Propagate 'plotinfo' if ~isempty(tsao(1).plotinfo) || ~isempty(tsao(2).plotinfo) bs.plotinfo = combine(tsao(1).plotinfo, tsao(2).plotinfo); end % Add history bs.addHistory(mi, pl, [invars(:)], inhists); % Set output varargout{1} = bs; end % END