Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/rjsample.m @ 41:6def6533cb16 database-connection-manager
Report authentication errors to user
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 18:04:34 +0100 |
parents | f0afece42f48 |
children | bc767aaa99a8 |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Reverse Jump MCMC for the computation of Bayes Factor % % N. Karnesis 27/09/2011 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Bxy LogL] = rjsample(model,in,out,nse,cov,number,limit,param,Tc,xi,xo,search,jumps,parplot,dbg_info,inNames,outNames,anneal,SNR0,DeltaL,inModel,outModel) import utils.const.* % initialize summ = 0; nacc = 1; heat = xi; rejected = 0; nummodels = numel(model(1,:)); legen = []; % assigning colors to curves (if not, all curves are blue) for gg = 1:(nummodels) coloor(gg,:) = rand(1,3); for dd = gg+1:(nummodels) colour{gg,dd} = rand(1,3); end end % plist to pass in to the sampler for use in bode spl = plist('outputs', outNames, ... 'inputs', inNames, ... 'reorganize', false,... 'numeric output',true); nrej = 0; for k = 1:nummodels if ~search for ii = 1:nummodels smpl(ii) = 0; mnacc(:,ii) = 0; nacc = 1; sumsamples = 1; end else % compute loglikelihood for starting model and values switch class(model) case 'matrix' smpl(k) = utils.math.loglikelihood_matrix(xo{k},in,out,nse,model(:,k),param{k},inModel,outModel); case 'smodel' smpl(k) = utils.math.loglikelihood(xo{k},in,out,nse,model(:,k),param{k}); case 'ssm' Amats{k} = model(:,k).amats; Bmats{k} = model(:,k).bmats; Cmats{k} = model(:,k).cmats; Dmats{k} = model(:,k).dmats; smpl(k) = utils.math.loglikelihood_ssm(xo{k},in,out,nse,model(:,k),param{k},inNames,outNames, spl, Amats{k}, Bmats{k}, Cmats{k}, Dmats{k}); otherwise error('### Model must be either from the ''smodel'' or the ''ssm'' class. Please check the inputs') end mnacc(:,k) = 0; nacc = 1; sumsamples = 1; end end utils.helper.msg(msg.IMPORTANT, 'Starting Reverse Jump MCMC ', mfilename('class'), mfilename); T = Tc(1); hjump = 0; % initialize (choose starting model) k = 1; % compute loglikelihood for starting model and values switch class(model) case 'matrix' loglk1mdl1 = utils.math.loglikelihood_matrix(xo{k},in,out,nse,model(:,k),param{k},inModel,outModel); case 'smodel' loglk1mdl1 = utils.math.loglikelihood(xo{k},in,out,nse,model(:,k),param{k}); case 'ssm' loglk1mdl1 = utils.math.loglikelihood_ssm(xo{k},in,out,nse,model(:,k),param{k},inNames,outNames, spl, Amats{k}, Bmats{k}, Cmats{k}, Dmats{k}); otherwise error('### Model must be either from the ''smodel'' or the ''ssm'' class. Please check the inputs') end % main loop while(nacc<number) % propose new point in the parameter space for model k [xn hjump] = propose(xo{k},cov{k},search,Tc,jumps,hjump,nacc,sumsamples); % check if out of limits if( any(xn < limit{k}(1,:)) || any(xn > limit{k}(2,:))) loglk2mdl1 = inf; else % switch depending on model class (new likelihood) switch class(model) case 'ssm' [loglk2mdl1 SNR] = utils.math.loglikelihood_ssm(xn,in,out,nse,model(:,k),param{k},inNames,outNames, spl, Amats{k}, Bmats{k}, Cmats{k}, Dmats{k}); case 'smodel' loglk2mdl1 = utils.math.loglikelihood(xn,in,out,nse,model(:,k),param{k}); case 'matrix' [loglk2mdl1 SNR] = utils.math.loglikelihood_matrix(xn,in,out,nse,model(:,k),param{k},inModel,outModel); otherwise error('### Model must be from the ''ssm'' class. Please check the inputs') end % compute annealing if ~isempty(Tc) if nacc <= Tc(1) betta = 1/2 * 10^(-xi*(1-Tc(1)/Tc(2))); elseif Tc(1) < nacc && nacc <= Tc(2) betta = 1/2 * 10^(-xi*(1-nacc/Tc(2))); else % compute heat factor switch anneal case 'simul' betta = 1/2; case 'thermo' if (0 <= SNR && SNR <= SNR0) heat = 1; elseif (SNR > SNR0) heat = (SNR/SNR0)^2; end betta = 1/2 * 10^(-heat*(1-nacc/number)); case 'simple' if (nacc > 10 && mod(nacc,10) == 0) deltalogp = std(smpl(nacc-10:nacc,1)); if deltalogp <= DeltaL(1) T = T + DeltaL(3); elseif deltalogp >= DeltaL(2) T = T - DeltaL(4); end heat = Tc(1)/T; end betta = 1/2 * 10^(-heat*(1-nacc/number)); end end else betta = 1/2; end end % metropolis [xo x0 loglk1mdl1 rj] = mhsmpl(k,betta,xn,xo,loglk1mdl1,loglk2mdl1); % update parameters (dimension matching) if ~rj for gg = 1:nummodels xo{gg} = updateparams(param,xo,k,gg); end end % draw random integer to jump into model % (supposed equal probability to jump to any model including the present one) k_new = randi(nummodels,1); % propose new point in new model k' xn_new = propose(xo{k_new},cov{k_new},search,Tc,jumps,hjump,nacc,sumsamples); % check if out of limits for new model if( any(xn_new < limit{k_new}(1,:)) || any(xn_new > limit{k_new}(2,:))) loglk2mdl2 = inf; else % switch depending on model class (new likelihood for proposed model k') switch class(model(k_new)) case 'ssm' [loglk2mdl2 SNR] = utils.math.loglikelihood_ssm(xn_new,in,out,nse,model(:,k_new),param{k_new},inNames,outNames, spl, Amats{k_new}, Bmats{k_new}, Cmats{k_new}, Dmats{k_new}); case 'smodel' loglk2mdl2 = utils.math.loglikelihood(xn_new,in,out,nse,model(:,k_new),param{k_new}); case 'matrix' [loglk2mdl2 SNR] = utils.math.loglikelihood_matrix(xn_new,in,out,nse,model(:,k_new),param{k_new},inModel,outModel); otherwise error('### Model must be from the ''ssm'' class. Please check the inputs') end end % calculate proposal densities logq1 = logprpsl(xo{k},x0,cov{k}); logq2 = logprpsl(xn_new,xo{k_new},cov{k_new}); % ratio (independent proposals => Jacobian = 1) logr = (logq2 + loglk2mdl2 - loglk2mdl1 - logq1) ; % decide if sample in new model is accepted or not if logr < 0 xo{k_new} = xn_new; nacc = nacc+1; sumsamples = nacc + rejected; mnacc(nacc,:) = mnacc(nacc-1,:); mnacc(nacc,k_new) = mnacc(nacc-1,k_new) + 1; smpl(nacc,k_new) = loglk2mdl2; if (k ~= k_new) smpl(nacc,k) = loglk2mdl1; end k = k_new; % update parameters again for gg = 1:nummodels xo{gg} = updateparams(param,xo,k,gg); end if dbg_info utils.helper.msg(msg.IMPORTANT, sprintf('acc new k: %d loglik: %d SNR: %d betta: %d ratio: %d ',k_new,loglk2mdl2,SNR,betta,logr)); end elseif rand(1) > (1 - exp(-logr)) xo{k_new} = xn_new; nacc = nacc+1; sumsamples = nacc + rejected; mnacc(nacc,:) = mnacc(nacc-1,:); mnacc(nacc,k_new) = mnacc(nacc-1,k_new) + 1; smpl(nacc,k_new) = loglk2mdl2; if (k ~= k_new) smpl(nacc,k) = loglk2mdl1; end k = k_new; % update parameters again for gg = 1:nummodels xo{gg} = updateparams(param,xo,k,gg); end if dbg_info utils.helper.msg(msg.IMPORTANT, sprintf('acc new k: %d loglik: %d SNR: %d betta: %d ratio: %d ',k_new,loglk2mdl2,SNR,betta,logr)); end elseif isnan(logr) rejected = rejected + 1; sumsamples = nacc + rejected; if dbg_info utils.helper.msg(msg.IMPORTANT, sprintf('rejected: %d out of bounds ',rejected)); end else nacc = nacc+1; sumsamples = nacc + rejected; mnacc(nacc,:) = mnacc(nacc-1,:); mnacc(nacc,k) = mnacc(nacc-1,k) + 1; if (k ~= k_new) smpl(nacc,k_new) = loglk2mdl2; end % printing on screen the correct things if rj smpl(nacc,k) = loglk1mdl1; if dbg_info utils.helper.msg(msg.IMPORTANT, sprintf('acc old k: %d loglik: %d SNR: %d betta: %d ratio: %d ',k,loglk1mdl1,SNR,betta,logr)); end else smpl(nacc,k) = loglk2mdl1; if (k ~= k_new) smpl(nacc,k_new) = loglk2mdl2; end xo{k} = xn; if dbg_info utils.helper.msg(msg.IMPORTANT, sprintf('acc old k: %d loglik: %d SNR: %d betta: %d ratio: %d ',k,loglk2mdl1,SNR,betta,logr)); end end end str = []; % printing to screen the following: "acc(#_of_model): # of points in % model #_of_model" for ii = 1:nummodels if dbg_info for ii = 1:nummodels str = [str sprintf('acc%d: %d ',ii,mnacc(nacc,ii))]; end utils.helper.msg(msg.IMPORTANT, str); end % the handshake problem for gg = 1:(nummodels) for dd = gg+1:(nummodels) %calculate Bayes Factor Bxy{gg,dd}(nacc,1) = mnacc(nacc,gg)/mnacc(nacc,dd); end end % plot Bayes factor if (parplot && (mod(summ,500) == 0) && (nacc ~= 0)) figure(1) for gg = 1:(nummodels) for dd = gg+1:(nummodels) legen = [legen ; sprintf('B%d%d',gg,dd)]; % legend plot(Bxy{gg,dd}(:,1),'color',colour{gg,dd}) legend(legen) hold on end end end hold off legen = []; % plot LogLikelihood for each model if (parplot && (mod(summ,100) == 0) && (nacc ~= 0)) figure (2) for jj = 3:(nummodels+2) %if (mnacc(nacc,jj-2) ~= 0) plot(smpl(:,jj-2),'color',coloor(jj-2,:)) legen = [legen ; sprintf('model%d',jj-2)]; % legend legend(legen) hold on %end end end hold off legen = []; % sum of points (used for plotting mainly -> avoid repeated ploting). summ = summ+1; end LogL = smpl; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % metropolis algorithm %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [xo x0 loglk1 rejected] = mhsmpl(k,betta,xn,xo,loglk1,loglk2) x0 = xo{k}; logalpha = betta*(loglk2 - loglk1); if logalpha < 0 xo{k} = xn; loglk1 = loglk2; rejected = 0; elseif rand(1) > (1 - exp(-logalpha)) xo{k} = xn; loglk1 = loglk2; rejected = 0; else rejected = 1; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute LogLikelihood %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % function logL = LogLamda(k,param,model,inNames,outNames,spl,Amats,Bmats,Dmats,Cmats) % % switch class(model(k_new)) % case 'ssm' % logL = utils.math.loglikelihood_ssm(xn_new,in,out,nse,model(:,k_new),param{k_new},inNames,outNames, spl, Amats{k_new}, Bmats{k_new}, Cmats{k_new}, Dmats{k_new}); % case 'smodel' % logL = utils.math.loglikelihood(xn_new,in,out,nse,model(:,k_new),param{k_new}); % case 'matrix' % [logL SNR] = utils.math.loglikelihood_matrix(xn_new,in,out,nse,model(:,k_new),param{k_new},inModel,outModel); % otherwise % error('### Model must be from the ''ssm'' class. Please check the inputs') % end % % % end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % propose a new jump function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [xn hjump]= propose(xo,cov,search,Tc,jumps,hjump,nacc,sumsamples) if search if nacc <= Tc(1) if(mod(sumsamples,5) == 0 && mod(sumsamples,25) ~= 0 && mod(sumsamples,40) ~= 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(2)^2*cov); elseif(mod(sumsamples,20) == 0 && mod(sumsamples,50) ~= 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(3)^2*cov); elseif(mod(sumsamples,10) == 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(4)^2*cov); else hjump = 0; xn = mvnrnd(xo,jumps(1)^2*cov); end else xn = mvnrnd(xo,cov); end else xn = mvnrnd(xo,cov); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % update parameters function (dimension matching) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xn= updateparams(param,xo,k,kn) % dimension difference of models dimdif = abs(size(param{kn},2) - size(param{k},2)); % mark the different parameters difparams = setxor(param{kn},param{k}); % total number of different parameters totalnumdifpar = numel(difparams); kk = 0; % case: dimension difference equals the # of different parameters % and dim(model(k')) > dim(model(k)) if (dimdif == totalnumdifpar && size(param{kn},2) > size(param{k},2)) xn = zeros(size(xo{kn})); for ii = 1:min(size(difparams,2)) compvec{ii} = strcmp(difparams{ii},param{kn}); position(ii) = find(compvec{ii}); % mark the positions of the different parameters xn(position(ii)) = xo{kn}(position(ii)); end for jj = 1:size(param{kn},2) if (jj ~= position) kk = kk+1; xn(jj) = xo{k}(kk); end end % case: dimension difference equals the # of different parameters % and dim(model(k')) < dim(model(k)) elseif (dimdif == totalnumdifpar && size(param{kn},2) < size(param{k},2)) xn = zeros(size(xo{kn})); for ii = 1:min(size(difparams,2)) compvec{ii} = strcmp(difparams{ii},param{k}); position(ii) = find(compvec{ii}); end for jj = 1:size(param{k},2) if (jj ~= position) kk = kk+1; xn(kk) = xo{k}(jj); end end % case: dimension difference is smaller than the # of different parameters % and dim(model(k')) > dim(model(k)) elseif (dimdif < totalnumdifpar && size(param{kn},2) > size(param{k},2)) xn = zeros(size(xo{kn})); for ii = 1:min(size(difparams,2)) compvec{ii} = strcmp(difparams{ii},param{kn}); if any(compvec{ii}) position(ii) = find(compvec{ii}); xn(position(ii)) = xo{kn}(position(ii)); end end for jj = 1:size(param{kn},2) if (jj ~= position) kk = kk+1; xn(jj) = xo{k}(kk); end end % case: dimension difference is smaller than the # of different parameters % and dim(model(k')) < dim(model(k)) elseif (dimdif < totalnumdifpar && size(param{kn},2) < size(param{k},2)) xn = zeros(size(xo{kn})); for ii = 1:size(param{kn},2) compvec{ii} = strcmp(param{kn}{ii},param{k}); if any(compvec{ii}) position(ii) = find(compvec{ii}); %xn(position(ii)) = xo{k}(position(ii)); else kk = kk+1; compvec{ii} = strcmp(param{kn}{ii},param{kn}); position2(kk) = find(compvec{ii}); xn(position2(kk)) = xo{kn}(position2(kk)); position(ii) = 0; end end kk = 0; for jj = 1:size(param{kn},2) if (position(jj) ~= 0) xn(jj) = xo{k}(position(jj)); end end % case: dimension difference is smaller than the # of different parameters % and dim(model(k')) = dim(model(k)) elseif (dimdif < totalnumdifpar && size(param{kn},2) == size(param{k},2)) xn = zeros(size(xo{kn})); for ii = 1:min(size(difparams,2)) compvec{ii} = strcmp(difparams{ii},param{kn}); if any(compvec{ii}) position(ii) = find(compvec{ii}); xn(position(ii)) = xo{kn}(position(ii)); end end for jj = 1:size(param{kn},2) if (jj ~= position) kk = kk+1; xn(jj) = xo{k}(kk); end end % case: new model proposed is the same as the previous one (k' == k). % That means we perform again the metropolis algorithm. elseif (totalnumdifpar == 0 && size(param{kn},2) == size(param{k},2)) xn = xo{k}; end % propose the new set of points in the new parameter space %[xn hjump]= propose(xn,cov{kn},search,Tc,jumps,hjump,nacc,sumsamples); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute proposal density %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function logq = logprpsl(X,mean,cov) logq = log(mvnpdf(X,mean,cov)); if (logq == -Inf) logq = 0; end end