Mercurial > hg > ltpda
view m-toolbox/test/LTPDA_training/topic5/TrainigSession_T5_Ex01.m @ 41:6def6533cb16 database-connection-manager
Report authentication errors to user
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 18:04:34 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% Training session Topic 5 exercise 01 % % System identification in z-domain 1 % % 1) Generate white noise % 2) Filter white noise with a miir filter % 3) Extract transfer function from data % 4) Fit TF with zDomainFit % 5) Compare results % 6) Comments % % L FERRAIOLI 22-02-09 % % $Id: TrainigSession_T5_Ex01.m,v 1.2 2009/02/25 18:18:45 luigi Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% 1) Generate White Noise % Build a gaussian random noise data series a = ao(plist('tsfcn', 'randn(size(t))', 'fs', 1, 'nsecs', 10000,'yunits','m')); %% 2) Filtering White Noise % set a proper plist for a miir filter converting meters to volt plmiir = plist('a',[2 0.3 0.4],'b',[1 .05 .3 0.1],'fs',1,'iunits','m','ounits','V'); % Building the filter filt = miir(plmiir); % filtering white noise ac = filter(a,filt); ac.simplifyYunits; %% Checking % set a plist for psd calculation plpsd = plist('Nfft',1000); % calculate psd of white data axx = psd(a,plpsd); % calculate psd of colored data acxx = psd(ac,plpsd); % plotting psd iplot(axx,acxx) %% 3) Extracting transfer function % settung plist for TF estimation pltf = plist('Nfft',1000); % TF estimation tf = tfe(a,ac,pltf); % Removing first bins form tf tf12 = split(tf(1,2),plist('split_type', 'frequencies', 'frequencies', [3e-3 5e-1])); % plotting iplot(tf(1,2),tf12) %% 4.1) Fitting TF - checking residuals log difference % Perform an automatic fit of TF data in order to identify a discrete % model. The parameters controlling fit accuracy are % % 'ResLogDiff' check that the normalized difference between data and fit % residuals in log scale is larger than the value specified. % if d is the input value for the parameter, than the algorithm check that % log10(data) - log10(res) > d % In other words if d = 1 an accuracy of 10% is guaranteed % if d = an accuracy of 1% is guaranteed % Note1 - fit residuals are calculated as res = model - data % Note2 - In fitting noisy data, this option should be relaxed otherwise % the function try to fit accurately the random oscillations due to the % noise % % 'RMSE' if r is the parameter value, then the algorithm check that the % step-by-step Root Mean Squared Error variation is less than 10^-r plfit1 = plist('FS',1,... % Sampling frequency for the model filters 'AutoSearch','on',... % Automatically search for a good model 'StartPolesOpt','c1',... % Define the properties of the starting poles - complex distributed in the unitary circle 'maxiter',50,... % maximum number of iteration per model order 'minorder',2,... % minimum model order 'maxorder',9,... % maximum model order 'weightparam','abs',... % assign weights as 1./abs(data) 'ResLogDiff',2,... % Residuals log difference 'ResFlat',[],... % Rsiduals spectral flatness (no need to assign this parameter for the moment) 'RMSE',7,... % Root Mean Squared Error Variation 'Plot','on',... % set the plot on or off 'ForceStability','on',... % force to output a stable ploes model 'CheckProgress','off'); % display fitting progress on the command window % Do the fit fobj1 = zDomainFit(tf12,plfit1); % setting input and output units for fitted model fobj1(:).setIunits('m'); fobj1(:).setOunits('V'); %% 4.2) Fitting TF - checking residuals spectral flatness % Perform an automatic fit of TF data in order to identify a discrete % model. The parameters controlling fit accuracy are % % 'ResFlat' Check that normalized fit residuals spectral flatness is larger % than the parameter value. Admitted values for the parameter are 0<r<1. % Suggested values are 0.5<r<0.7. % Note - normalized fit residuals are calculated as % res = (model - data)./data % Note2 - This option could be useful with noisy data, when ResLogDiff % option is not useful % % 'RMSE' if r is the parameter value, then the algorithm check that the % step-by-step Root Mean Squared Error variation is less than 10^-r plfit2 = plist('FS',1,... % Sampling frequency for the model filters 'AutoSearch','on',... % Automatically search for a good model 'StartPolesOpt','c1',... % Define the properties of the starting poles - complex distributed in the unitary circle 'maxiter',50,... % maximum number of iteration per model order 'minorder',2,... % minimum model order 'maxorder',9,... % maximum model order 'weightparam','abs',... % assign weights as 1./abs(data) 'ResLogDiff',[],... % Residuals log difference (no need to assign this parameter for the moment) 'ResFlat',0.65,... % Rsiduals spectral flatness 'RMSE',7,... % Root Mean Squared Error Variation 'Plot','on',... % set the plot on or off 'ForceStability','on',... % force to output a stable ploes model 'CheckProgress','off'); % display fitting progress on the command window fobj2 = zDomainFit(tf12,plfit2); % setting input and output units for fitted model fobj2(:).setIunits('m'); fobj2(:).setOunits('V'); %% 5) Evaluating accuracy % fobj1 and fobj2 are parallel bank of miir filters. Therofore we can % calculate filter response and compare with our starting model % set plist for filter response plrsp = plist('bank','parallel','f1',1e-5,'f2',0.5,'nf',100,'scale','log'); % calculate filters responses rfilt = resp(filt,plrsp); % strating model response rfobj1 = resp(fobj1,plrsp); % result of first fit rfobj2 = resp(fobj2,plrsp); % result of second fit % plotting filters iplot(rfilt,rfobj1,rfobj2) % plotting difference iplot(abs(rfobj1-rfilt),abs(rfobj2-rfilt)) %% 6) Comments % Decomposition in partial fractions of the starting filter provides % residues = % % 0.531297296250259 - 0.28636710753776i % 0.531297296250259 + 0.28636710753776i % 0.937405407499481 % % % poles = % % 0.112984252455744 + 0.591265379634664i % 0.112984252455744 - 0.591265379634664i % -0.275968504911487 % % If we look inside the fitted objects fobj1 and fobj2 the following % results can be extracted % rsidues = % 0.531391341497363 - i*0.286395031447695 % 0.531391341497363 + i*0.286395031447695 % 0.937201773620951 % % poles = % 0.112971704620295 + i*0.591204610859687 % 0.112971704620295 - i*0.591204610859687 % -0.276032231799774 % % Model order is correct and residues and poles values are accurate to the % third decimal digit. % % With low order model the algorithm works fine. For higher order model the % algorithm is capable to provide a model within the prescribed accuracy % but the order could be not guaranteed. Lets see what happen with higher % order models opening the second exercise script: % TrainingSession_T5_Ex02.m