view m-toolbox/html_help/help/ug/sigproc_fir_content.html @ 10:75007001cbfe
database-connection-manager
Check for binary only objects
author
Daniele Nicolodi <nicolodi@science.unitn.it>
date
Mon, 05 Dec 2011 16:20:06 +0100 (2011-12-05)
parents
f0afece42f48
children
line source
+ − <p>
+ − Finite Impulse Response filters are those filters present a non-zero finite length response
+ − when excited with a very brief (ideally an infinite peak) input signal. A linear causal
+ − FIR filter can be described by the following difference equation
+ − </p>
+ − <div align="center">
+ − <IMG src="images/sigproc_8.png" width="157" height="56" align="middle" border="0">
+ − </div>
+ − <p>
+ − This operation describe a nonrecursive system, i.e. a system that only depends on current
+ − and past samples of the input data stream <tt>x[n]</tt>
+ − </p>
+ − <h2><a name="FIRbuild">Creating a FIR filter in the LTPDA</a></h2>
+ − <p>
+ − The LTPDA Toolbox allows the implementation of FIR filters by means of the
+ − <a href="class_desc_mfir.html"> mfir class</a>.
+ − </p>
+ − <h2><a name="FIRplist">Creating from a plist</a></h2>
+ − <p>
+ − The following example creates an order 64 highpass filter with high frequency gain 2.
+ − The filter is designed for 1 Hz sampled data and has a cut-off frequency of 0.2 Hz.
+ − </p>
+ − <div class="fragment"><pre>
+ −
+ − pl = plist(<span class="string">'type'</span>, <span class="string">'highpass'</span>, ...
+ − <span class="string">'order'</span>, 64, ...
+ − <span class="string">'gain'</span>, 2.0, ...
+ − <span class="string">'fs'</span>, 1, ...
+ − <span class="string">'fc'</span>, 0.2);
+ − f = mfir(pl)
+ − </pre></div>
+ −
+ − <h2><a name="FIRdiff">Creating from a difference equation</a></h2>
+ − <p>
+ − The filter can be defined in terms of two vectors specifying the coefficients of the filter
+ − and the sampling frequency. The following example creates a FIR filter with sampling frequency
+ − 1 Hz and the following recursive equation:
+ − </p>
+ −
+ − <div align="center">
+ − <IMG src="images/sigproc_10.png" width="202" height="28" align="middle" border="0"></div>
+ − </div>
+ −
+ − <p><br></p>
+ −
+ − <div class="fragment"><pre>
+ −
+ − b = [-0.8 10];
+ − fs = 1;
+ − f = mfir(b,fs)
+ − </pre></div>
+ −
+ − <h2><a name="FIRfromAO">Creating from an Analysis Object</a></h2>
+ − <p>
+ − A FIR filter can be generated based on the magnitude of the input Analysis Object or fsdata object.
+ − In the following example a fsdata object is first generated and then passed to the mfir constructor
+ − to obtain the equivalent FIR filter.
+ − </p>
+ −
+ − <div class="fragment"><pre>
+ −
+ − fs = 10; <span class="comment">% sampling frequency</span>
+ − f = linspace(0, fs/2, 1000);
+ − y = 1./(1+(0.1*2*pi*f).^2); <span class="comment">% an arbitrary function</span>
+ − fsd = fsdata(f,y,fs); <span class="comment">% build the fsdata object</span>
+ − f = mfir(ao(fsd));
+ −
+ − </pre></div>
+ − <br>
+ − <p>
+ − Available methods for this option are: 'frequency-sampling' (uses fir2), 'least-squares' (uses firls)
+ − and 'Parks-McClellan' (uses firpm)
+ − </p>
+ − <h2><a name="IIRimport">Importing an existing model</a></h2>
+ − <p>
+ − The mfir constructor also accepts as an input existing models in different formats:
+ − </p>
+ − <li>
+ − <li><p>LISO files:<p>
+ − <div class="fragment"><pre>
+ − f = mfir(<span class="string">'foo_fir.fil'</span>)
+ − </pre></div>
+ − </li>
+ − <li><p>XML files:</p>
+ − <div class="fragment"><pre>
+ − f = mfir(<span class="string">'foo_fir.xml'</span>)
+ − </pre></div>
+ − <li><p>MAT files:</p>
+ − <div class="fragment"><pre>
+ − f = mfir(<span class="string">'foo_fir.mat'</span>)
+ − </pre></div>
+ − </li>
+ − <li><p>From repository:</p>
+ − <div class="fragment"><pre>
+ − f = mfir(plist(<span class="string">'hostname'</span>, <span class="string">'localhost'</span>, <span class="string">'database'</span>, <span class="string">'ltpda'</span>, <span class="string">'ID'</span>, []))
+ − </pre></div>
+ − </li>
+ − </ul>