Mercurial > hg > ltpda
view m-toolbox/test/test_ao_linfit.m @ 10:75007001cbfe database-connection-manager
Check for binary only objects
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 (2011-12-05) |
parents | f0afece42f48 |
children |
line wrap: on
line source
% TEST_AO_LINFIT tests the linfit method of the AO class. % % M Hueller 02-03-10 % % $Id: test_ao_linfit.m,v 1.6 2011/05/15 22:52:57 mauro Exp $ % % function test_ao_linfit() %% Make fake AO from polyval nsecs = 100; fs = 10; unit_list = unit.supportedUnits; u1 = unit(cell2mat(utils.math.randelement(unit_list,1))); u2 = unit(cell2mat(utils.math.randelement(unit_list,1))); pl1 = plist('nsecs', nsecs, 'fs', fs, ... 'tsfcn', 'polyval([10 1], t) + randn(size(t))', ... 'xunits', 's', 'yunits', u1); pl2 = plist('nsecs', nsecs, 'fs', fs, ... 'tsfcn', 'polyval([-5 0.2], t) + randn(size(t))', ... 'xunits', 's', 'yunits', u2); a1 = ao(pl1); a2 = ao(pl2); a = scatterData(a1, a2); %% Fit with a straight line p11 = linfit(a1, plist(... )); p12 = linfit(a1, plist(... 'dy', 0.1)); p22 = linfit(a1, plist(... 'dx', 0.1, 'dy', 0.1, 'P0', [0 0])); p13 = linfit(a1, plist(... 'dy', 0.1*ones(size(a1.y)))); p23 = linfit(a1, plist(... 'dx', 0.1*ones(size(a1.x)), 'dy', 0.1*ones(size(a1.y)), 'P0', [0 0])); p14 = linfit(a1, plist(... 'dy', ao(0.1, plist('yunits', a1.yunits)))); p24 = linfit(a1, plist(... 'dx', ao(0.1, plist(... 'yunits', a1.xunits)), 'dy', ao(0.1, plist('yunits', a1.yunits)), 'P0', [0 0])); p15 = linfit(a1, plist(... 'dy', ao(0.1*ones(size(a1.y)), plist('yunits', a1.yunits)))); p25 = linfit(a1, plist(... 'dx', ao(0.1*ones(size(a1.x)), plist('yunits', a1.xunits)), 'dy', ao(0.1*ones(size(a1.y)), plist('yunits', a1.yunits)), 'P0', [0 0])); p26 = linfit(a1, plist(... 'dx', 0.1, 'dy', 0.1, 'P0', ao([0 0]))); p27 = linfit(a1, plist(... 'dx', 0.1, 'dy', 0.1, 'P0', p11)); %% Compute fit: evaluating pest b11 = p11.eval(plist('type', 'tsdata', 'XData', a1, 'xfield', 'x')); b12 = p12.eval(plist('XData', a1, 'xfield', 'x')); b22 = p22.eval(a1, plist('xfield', 'x')); b13 = p13.eval(plist('XData', a1, 'xfield', 'x')); b23 = p23.eval(a1, plist('type', 'tsdata', 'xfield', 'x')); b14 = p14.eval(plist('XData', a1, 'xfield', 'x')); b24 = p24.eval(a1, plist('type', 'tsdata', 'xfield', 'x')); b15 = p15.eval(a1, plist('xfield', 'x')); b25 = p25.eval(plist('XData', a1, 'xfield', 'x')); b26 = p26.eval(plist('type', 'tsdata', 'XData', a1.x)); b27 = p27.eval(plist('type', 'tsdata', 'XData', a1.x)); %% Plot fit iplot(a1, b11, b12, b13, b14, b15, b26, b27, ... b22, b23, b24, b25, ... plist('LineStyles', {'', '--'})); %% Remove linear trend c = a1-b11; iplot(c) plot(c.hist) %% Reproduce from history disp('Try rebuilding') a_out = rebuild(c); iplot(a_out) plot(a_out.hist) %% Fit with a straight line p = linfit(a, plist(... )); %% Compute fit: evaluating pest b1 = p.eval(plist('XData', a, 'xfield', 'x')); b2 = p.eval(a, plist('xfield', 'x')); b3 = p.eval(plist('type', 'xydata', 'XData', a.x, 'xunits', a.xunits)); b4 = p.eval(plist('XData', a.x, 'xunits', a.xunits)); %% Plot fit iplot(a, b1, b2, b3, b4, ... plist('LineStyles', {'', '--'})); %% Fit with a straight line p11 = linfit(a1, a2, plist(... )); p12 = linfit(a1, a2, plist(... 'dy', 0.1)); p22 = linfit(a1, a2, plist(... 'dx', 0.1, 'dy', 0.1, 'P0', [0 0])); p13 = linfit(a1, a2, plist(... 'dy', 0.1*ones(size(a1.x)))); p23 = linfit(a1, a2, plist(... 'dx', 0.1*ones(size(a1.x)), 'dy', 0.1*ones(size(a1.x)), 'P0', [0 0])); p14 = linfit(a1, a2, plist(... 'dy', ao(0.1, plist('yunits', a2.yunits)))); p24 = linfit(a1, a2, plist(... 'dx', ao(0.1, plist('yunits', a1.yunits)), 'dy', ao(0.1, plist('yunits', a2.yunits)), 'P0', [0 0])); p15 = linfit(a1, a2, plist(... 'dy', ao(0.1*ones(size(a2.y)), plist('yunits', a2.yunits)))); p25 = linfit(a1, a2, plist(... 'dx', ao(0.1*ones(size(a1.y)), plist('yunits', a1.yunits)), 'dy', ao(0.1*ones(size(a2.y)), plist('yunits', a2.yunits)), 'P0', [0 0])); p26 = linfit(a1, a2, plist(... 'dx', 0.1, 'dy', 0.1, 'P0', ao([0 0]))); p27 = linfit(a1, a2, plist(... 'dx', 0.1, 'dy', 0.1, 'P0', p11)); %% Compute fit: evaluating pest b11 = p11.eval(plist('type', 'xydata', 'XData', a1.y, 'xunits', a1.yunits)); b12 = p12.eval(plist('type', 'xydata', 'XData', a1.y, 'xunits', a1.yunits)); b22 = p22.eval(a1, plist('type', 'xydata')); b13 = p13.eval(plist('type', 'xydata', 'XData', a1.y, 'xunits', a1.yunits)); b23 = p23.eval(a1, plist('type', 'xydata')); b14 = p14.eval(plist('type', 'xydata', 'XData', a1.y, 'xunits', a1.yunits)); b24 = p24.eval(a1, plist('type', 'xydata')); b15 = p15.eval(a1, plist('type', 'xydata')); b25 = p25.eval(plist('type', 'xydata', 'XData', a1.y)); b26 = p26.eval(plist('type', 'xydata', 'XData', a1.y)); b27 = p27.eval(plist('type', 'xydata', 'XData', a1.y)); % Build reference object a12 = ao(plist('xvals', a1.y, 'yvals', a2.y, ... 'xunits', a1.yunits, 'yunits', a2.yunits)); %% Plot fit iplot(b22, b23, b24, b15, ... b12, b13, b14, b11, ... plist('LineStyles', {'', '--'})); %% Plot fit iplot(b25, b26, b27, ... plist('LineStyles', {'', '--'})); %% Remove linear trend c = a12-b27; iplot(c) plot(c.hist) %% Reproduce from history disp('Try rebuilding') a_out = rebuild(c); iplot(a_out) plot(a_out.hist) % end % END