Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/loglikelihood_ssm.m @ 25:79dc7091dbbc database-connection-manager
Update tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Compute log-likelihood for SSM objects % % M Nofrarias 15-06-09 % % $Id: loglikelihood_ssm.m,v 1.3 2011/11/16 08:52:49 nikos Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [loglk snr]= loglikelihood_ssm(xn,in,out,noise,model,params,inNames,outNames, spl, Amats, Bmats, Cmats, Dmats) loglk = 0; snr = 0; switch class(in) case 'ao' % parameters fs = noise(1).fs; N = length(noise(1).y); if (numel(in) == 1 && numel(out) == 1) xn = double(xn); spl = plist('set', 'for bode', ... 'outputs', outNames, ... 'inputs', inNames, ... 'reorganize', false,... 'f', in(1).x); eval = copy(model,1); % set parameter values eval.doSetParameters(params, xn); % make numeric eval.doSubsParameters(params, true); % do bode h11 = bode(eval, spl, 'internal'); f = in.x; % spectra to variance C11 = (N*fs/2)*noise(1).y; % compute elements of inverse cross-spectrum matrix InvS11 = 1./C11; % compute log-likelihood terms first, all at once does not cancel the % imag part when multiplying x.*conj(x) v1v1 = conj(out(1).y - h11.y.*in(1).y).*(out(1).y - h11.y.*in(1).y); tmplt = h11.*in(1).y; %computing SNR snrexp = utils.math.stnr(tmplt,0,out(1).y,0,InvS11,0,0,0); snr = snr + 20*log10(snrexp); log1exp = sum(InvS11.*v1v1); loglk = loglk + log1exp; elseif (numel(in) == 2 && numel(out) == 2) f = in(1).x; xn = double(xn); spl = plist('set', 'for bode', ... 'outputs', outNames, ... 'inputs', inNames, ... 'reorganize', false,... 'f', in(1).x); eval = copy(model,1); % set parameter values eval.doSetParameters(params, xn); % make numeric eval.doSubsParameters(params); % do bode h = bode(eval, spl, 'internal'); h11 = h(1); h12 = h(2); h21 = h(3); h22 = h(4); % spectra to variance C11 = (N*fs/2)*noise(1).y; C22 = (N*fs/2)*noise(2).y; C12 = (N*fs/2)*noise(3).y; C21 = (N*fs/2)*noise(4).y; % compute elements of inverse cross-spectrum matrix InvS11 = (C22./(C11.*C22 - C12.*C21)); InvS22 = (C11./(C11.*C22 - C12.*C21)); InvS12 = (C21./(C11.*C22 - C12.*C21)); InvS21 = (C12./(C11.*C22 - C12.*C21)); % compute log-likelihood terms first, all at once does not cancel the % imag part when multiplying x.*conj(x) v1v1 = conj(out(1).y - h11.y.*in(1).y - h12.y.*in(2).y).*(out(1).y - h11.y.*in(1).y - h12.y.*in(2).y); v2v2 = conj(out(2).y - h21.y.*in(1).y - h22.y.*in(2).y).*(out(2).y - h21.y.*in(1).y - h22.y.*in(2).y); v1v2 = conj(out(1).y - h11.y.*in(1).y - h12.y.*in(2).y).*(out(2).y - h21.y.*in(1).y - h22.y.*in(2).y); v2v1 = conj(out(2).y - h21.y.*in(1).y - h22.y.*in(2).y).*(out(1).y - h11.y.*in(1).y - h12.y.*in(2).y); tmplt1 = h11.*in(1).y + h12.*in(2).y; tmplt2 = h21.*in(1).y + h22.*in(2).y; %computing SNR snrexp = utils.math.stnr(tmplt1,tmplt2,out(1).y,out(2).y,InvS11,InvS22,InvS12,InvS21); snr = snr + 20*log10(snrexp); log1exp = sum(InvS11.*v1v1 + InvS22.*v2v2 - InvS12.*v1v2 - InvS21.*v2v1); loglk = loglk + log1exp; else error('This method is only implemented for 1 input / 1 output model or for 2 inputs / 2 outputs models'); end case 'matrix' % parameters fs = in(1).objs(1).fs; % num. experiments nexp = numel(in); noutChannels = numel(out(1).objs); N = length(noise(1).objs(1).y); loglk = 0; for nnn = 1:nexp if ((numel(in(1).objs) == 1) && numel(out(1).objs) == 1) freqs = in(nnn).objs(1).data.getX; xn = double(xn); spl = plist('set', 'for bode', ... 'outputs', outNames, ... 'inputs', inNames, ... 'reorganize', false,... 'f', freqs); eval = copy(model(nnn),1); % set parameter values eval.doSetParameters(params, xn); % make numeric eval.doSubsParameters(params, true); % do bode h(:,1) = bode(eval, spl, 'internal'); for j = 1:noutChannels^2 % spectra to variance % (N*fs/2)* this multiplication is done now in mcmc C(:,j) = noise(nnn).objs(j).data.getY; end % compute elements of inverse cross-spectrum matrix InvS11 = 1./C(:,1); % compute log-likelihood terms first, all at once does not cancel the % imag part when multiplying x.*conj(x) in1 = in(nnn).objs(1).data.getY; out1 = out(nnn).objs(1).data.getY; % matrix index convention: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) v1v1 = conj(out1 - h.getObjectAtIndex(1,1).y.*in1).*(out1 - h.getObjectAtIndex(1,1).y.*in1); tmplt = h.getObjectAtIndex(1,1).y.*in1; %computing SNR snrexp = utils.math.stnr(tmplt,0,out1,0,InvS11,0,0,0); snr = snr + 20*log10(snrexp); log1exp = sum(InvS11.*v1v1); loglk = loglk + log1exp; elseif ((numel(in(1).objs) == 2) && numel(out(1).objs) == 2) freqs = in(nnn).objs(1).data.getX; xn = double(xn); spl.pset('f', freqs); eval = model(nnn); eval.setA(Amats); eval.setB(Bmats); eval.setC(Cmats); eval.setD(Dmats); % set parameter values eval.doSetParameters(params, xn); % make numeric eval.doSubsParameters(params, true); % do bode [h1 h2 h3 h4] = bode(eval, spl); for j = 1:noutChannels^2 % spectra to variance % (N*fs/2)* this multiplication is done now in mcmc C(:,j) = noise(nnn).objs(j).data.getY; end % compute elements of inverse cross-spectrum matrix detm = (C(:,1).*C(:,4) - C(:,2).*C(:,3)); InvS11 = C(:,4)./detm; %1 4 InvS22 = C(:,1)./detm; %4 1 InvS12 = C(:,2)./detm; %2 2 InvS21 = C(:,3)./detm; %3 3 % compute log-likelihood terms first, all at once does not cancel the % imag part when multiplying x.*conj(x) in1 = in(nnn).objs(1).data.getY; in2 = in(nnn).objs(2).data.getY; out1 = out(nnn).objs(1).data.getY; out2 = out(nnn).objs(2).data.getY; % matrix index convention: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) v1v1 = conj(out1 - h1.*in1 - h3.*in2).*(out1 - h1.*in1 - h3.*in2); v2v2 = conj(out2 - h2.*in1 - h4.*in2).*(out2 - h2.*in1 - h4.*in2); v1v2 = conj(out1 - h1.*in1 - h3.*in2).*(out2 - h2.*in1 - h4.*in2); v2v1 = conj(out2 - h2.*in1 - h4.*in2).*(out1 - h1.*in1 - h3.*in2); tmplt1 = h1.*in1 + h3.*in2; tmplt2 = h2.*in1 + h4.*in2; %computing SNR snrexp = utils.math.stnr(tmplt1,tmplt2,out1,out2,InvS11,InvS22,InvS12,InvS21); snr = snr + 20*log10(snrexp); log1exp = sum(InvS11.*v1v1 + InvS22.*v2v2 - InvS12.*v1v2 - InvS21.*v2v1); loglk = loglk + log1exp; else error('This method is only implemented for 1 input / 1 output model or for 2 inputs / 2 outputs models'); end end end end