Mercurial > hg > ltpda
view m-toolbox/classes/@ao/lcohere.m @ 25:79dc7091dbbc database-connection-manager
Update tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% LCOHERE implement magnitude-squadred coherence estimation on a log frequency axis. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: LCOHERE implement coherence estimation on a log frequency axis. % The estimate is done by taking % the ratio of the CPSD between the two inputs, Sxy, divided by % the product of the PSDs of the inputs, Sxx and Syy, % and is either magnitude-squared: (abs(Sxy))^2 / (Sxx * Syy) % or complex value: Sxy / sqrt(Sxx * Syy) % Here x is the first input, y is the second input % % CALL: b = lcohere(a1,a2,pl) % % INPUTS: a1 - input analysis object % a2 - input analysis object % pl - input parameter list % % OUTPUTS: b - output analysis object % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'lcohere')">Parameters Description</a> % % VERSION: $Id: lcohere.m,v 1.30 2011/04/08 08:56:18 hewitson Exp $ % % References: "Improved spectrum estimation from digitized time series % on a logarithmic frequency axis", Michael Troebs, Gerhard Heinzel, % Measurement 39 (2006) 120-129. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = lcohere(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); if nargout == 0 error('### lcohere cannot be used as a modifier. Please give an output variable.'); end % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); % Apply defaults to plist pl = applyDefaults(getDefaultPlist, varargin{:}); % Throw an error if input is not two AOs if numel(as) ~= 2 error('### lcohere only accepts two inputs AOs.'); end % Compute coherence with lxspec scale_type = find(pl, 'Type'); switch lower(scale_type) case 'c' bs = ao.lxspec(as, pl, 'cohere', getInfo, ao_invars); case 'ms' bs = ao.lxspec(as, pl, 'mscohere', getInfo, ao_invars); otherwise error(['### Unknown coherence type: [' scale_type ']']); end % Set output varargout{1} = bs; end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist(); end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: lcohere.m,v 1.30 2011/04/08 08:56:18 hewitson Exp $', sets, pl); ii.setModifier(false); ii.setArgsmin(2); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if ~exist('pl', 'var') || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() % General plist for Welch-based, log-scale spaced spectral estimators pl = plist.LPSD_PLIST; % Type p = param({'Type',['type of output scaling. Choose from:<ul>', ... '<li>MS - Magnitude-Squared Coherence:<br><tt>(abs(Sxy))^2 / (Sxx * Syy)</tt></li>', ... '<li>C - Complex Coherence:<br><tt>Sxy / sqrt(Sxx * Syy)</tt></li></ul>']}, {1, {'C', 'MS'}, paramValue.SINGLE}); pl.append(p); end % PARAMETERS: % % 'Kdes' - desired number of averages [default: 100] % 'Jdes' - number of spectral frequencies to compute [default: 1000] % 'Lmin' - minimum segment length [default: 0] % 'Win' - the window to be applied to the data to remove the % discontinuities at edges of segments. [default: taken from % user prefs] % Only the design parameters of the window object are % used. Enter either: % - a specwin window object OR % - a string value containing the window name % e.g., plist('Win', 'Kaiser', 'psll', 200) % 'Olap' - segment percent overlap [default: -1, (taken from window function)] % 'Type' - type of output scaling. Choose from: % MS - Magnitude-Squared Coherence (abs(Sxy))^2 / (Sxx * Syy) % C - Complex Coherence Sxy / sqrt(Sxx * Syy) [default] % 'Order' - order of segment detrending % -1 - no detrending % 0 - subtract mean [default] % 1 - subtract linear fit % N - subtract fit of polynomial, order N