Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/sigproc_fir_content.html @ 25:79dc7091dbbc database-connection-manager
Update tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
<p> Finite Impulse Response filters are those filters present a non-zero finite length response when excited with a very brief (ideally an infinite peak) input signal. A linear causal FIR filter can be described by the following difference equation </p> <div align="center"> <IMG src="images/sigproc_8.png" width="157" height="56" align="middle" border="0"> </div> <p> This operation describe a nonrecursive system, i.e. a system that only depends on current and past samples of the input data stream <tt>x[n]</tt> </p> <h2><a name="FIRbuild">Creating a FIR filter in the LTPDA</a></h2> <p> The LTPDA Toolbox allows the implementation of FIR filters by means of the <a href="class_desc_mfir.html"> mfir class</a>. </p> <h2><a name="FIRplist">Creating from a plist</a></h2> <p> The following example creates an order 64 highpass filter with high frequency gain 2. The filter is designed for 1 Hz sampled data and has a cut-off frequency of 0.2 Hz. </p> <div class="fragment"><pre> pl = plist(<span class="string">'type'</span>, <span class="string">'highpass'</span>, ... <span class="string">'order'</span>, 64, ... <span class="string">'gain'</span>, 2.0, ... <span class="string">'fs'</span>, 1, ... <span class="string">'fc'</span>, 0.2); f = mfir(pl) </pre></div> <h2><a name="FIRdiff">Creating from a difference equation</a></h2> <p> The filter can be defined in terms of two vectors specifying the coefficients of the filter and the sampling frequency. The following example creates a FIR filter with sampling frequency 1 Hz and the following recursive equation: </p> <div align="center"> <IMG src="images/sigproc_10.png" width="202" height="28" align="middle" border="0"></div> </div> <p><br></p> <div class="fragment"><pre> b = [-0.8 10]; fs = 1; f = mfir(b,fs) </pre></div> <h2><a name="FIRfromAO">Creating from an Analysis Object</a></h2> <p> A FIR filter can be generated based on the magnitude of the input Analysis Object or fsdata object. In the following example a fsdata object is first generated and then passed to the mfir constructor to obtain the equivalent FIR filter. </p> <div class="fragment"><pre> fs = 10; <span class="comment">% sampling frequency</span> f = linspace(0, fs/2, 1000); y = 1./(1+(0.1*2*pi*f).^2); <span class="comment">% an arbitrary function</span> fsd = fsdata(f,y,fs); <span class="comment">% build the fsdata object</span> f = mfir(ao(fsd)); </pre></div> <br> <p> Available methods for this option are: 'frequency-sampling' (uses fir2), 'least-squares' (uses firls) and 'Parks-McClellan' (uses firpm) </p> <h2><a name="IIRimport">Importing an existing model</a></h2> <p> The mfir constructor also accepts as an input existing models in different formats: </p> <li> <li><p>LISO files:<p> <div class="fragment"><pre> f = mfir(<span class="string">'foo_fir.fil'</span>) </pre></div> </li> <li><p>XML files:</p> <div class="fragment"><pre> f = mfir(<span class="string">'foo_fir.xml'</span>) </pre></div> <li><p>MAT files:</p> <div class="fragment"><pre> f = mfir(<span class="string">'foo_fir.mat'</span>) </pre></div> </li> <li><p>From repository:</p> <div class="fragment"><pre> f = mfir(plist(<span class="string">'hostname'</span>, <span class="string">'localhost'</span>, <span class="string">'database'</span>, <span class="string">'ltpda'</span>, <span class="string">'ID'</span>, [])) </pre></div> </li> </ul>