Mercurial > hg > ltpda
view m-toolbox/test/test_ao_zDomainFit_3.m @ 25:79dc7091dbbc database-connection-manager
Update tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% Test script for zDomainFit on noisy data % % L. Ferraioli 02-12-08 % % $Id: test_ao_zDomainFit_3.m,v 1.3 2009/04/20 14:31:14 luigi Exp $ % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Smooth psd model % % We define a smooth psd model and generate colored noise with such a psd % shape. Then we fit sqrt(psd) of noisy data following two different % procedure to decide when the fit is satisfactory and we can exit from the % fitting routine. % The first procedure is based on the check of residuals spectral flatness. % The second procedure is based on the check of residuals log distance to % fitted data. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Useful constants fs = 10; % sampling frequency Hz Nsecs = 1e5; % Number of seconds in the data stream Nfft = 1e4; % Number of samples in the fft pls = plist('Nfft', Nfft,'Order',0); % plist for spectra %% Building a frequency response AO % Create a frequency-series AO % pl_data = plist('fsfcn', '0.01./(0.01+f)', 'f1', 1e-6, 'f2', 5, 'nf', 1000); pl_data = plist('fsfcn', '(1e-3./(f).^2 + 1e3./(0.001+f) + 1e5.*f.^2).*1e-10', 'f1', 1e-6, 'f2', 5, 'nf', 300); mod = ao(pl_data); mod.setName('psd model'); iplot(mod) %% Building white noise a = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', Nsecs)); a.setName('white noise') a.setYunits('m') %% Calling the noise generator pl = plist(... 'model', mod, ... 'MaxIter', 50, ... 'PoleType', 2, ... 'MinOrder', 15, ... 'MaxOrder', 25, ... 'Weights', 2, ... 'Plot', false,... 'Disp', false,... 'RMSEVar', 8,... 'FitTolerance', 2); ac = noisegen1D(a, pl); %% Spetrum and Transfer function acxx = ac.psd(pls); % spectrum of data etf = tfe(a,ac,pls); % calculating transfer functions from data iplot(acxx) iplot(etf(1,2)) %% Fitting Sqrt Spectrum - Residuals spectral flatness checking % Fitting parameter list pl_fit1 = plist('FS',fs,... 'AutoSearch','on',... 'StartPoles',[],... 'StartPolesOpt','c2',... 'maxiter',60,... 'minorder',19,... 'maxorder',25,... 'weights',[],... 'weightparam','abs',... 'ResLogDiff',[],... 'ResFlat',0.7,... 'RMSE',5,... 'Plot','off',... 'ForceStability','off',... 'CheckProgress','on'); % Do fit [filt2,bsp1,bspres1,bsprmse1] = zDomainFit(sqrt(acxx./2), pl_fit1); % division by 2 is necessary because acxx is the one-sided psd bsp1.setName('Fit1'); %% Checing spectral flatness % checking the spectral flatness of the normalized residuals in order to be % sure that the procedure works correctly kk = abs(bspres1./bsp1); rf = utils.math.spflat(kk.data.y); iplot(abs(bspres1./bsp1)) %% Fitting Spectrum - Residuals log difference checking % Fitting parameter list pl_fit2 = plist('FS',fs,... 'AutoSearch','on',... 'StartPoles',[],... 'StartPolesOpt','c2',... 'maxiter',60,... 'minorder',17,... 'maxorder',20,... 'weights',[],... 'weightparam','abs',... 'ResLogDiff',0.5,... 'ResFlat',0.7,... 'RMSE',5,... 'Plot','off',... 'ForceStability','off',... 'CheckProgress','on'); % Do fit [filt2,bsp2,bspres2,bsprmse2] = zDomainFit(sqrt(acxx./2), pl_fit2); % division by 2 is necessary because acxx is the one-sided psd bsp2.setName('Fit2'); %% Model calculated at the same frequencies of the fit AOs % This step is useful in order to compare the results of the two fitting % procedures f = acxx.data.x; pl_datar = plist('fsfcn', '(1e-3./(f).^2 + 1e3./(0.001+f) + 1e5.*f.^2).*1e-10', 'f', f); modr = ao(pl_datar); modr.setName('psd model'); %% Checking the two fit results % plot the normalized difference between fit results and model data in % order to check the fit accuracy plpl = plist('Legends',{'Fit1','Fit2'}); iplot(abs(bsp1-sqrt(modr))./sqrt(modr),abs(bsp2-sqrt(modr))./sqrt(modr),plpl) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Peaked psd model % % We define a psd model with some resonance peaks and generate colored % noise with such a psd shape. Then we fit sqrt(psd) of noisy data % following two different procedure to decide when the fit is satisfactory % and we can exit from the fitting routine. % The first procedure is based on the check of residuals spectral flatness. % The second procedure is based on the check of residuals log distance to % fitted data. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Building a frequency response AO % Create a psd model with two peak resonance at 5e-2 and 7e-2 Hz func = '(1e-3./(f).^2 + 1e3./(0.001+f) + 1e5.*f.^2).*1e-10 + 1e-6./((f./7e-2).^2-1).^2 + 1e-5./((f./5e-2).^2-1).^2'; pl_data = plist('fsfcn', func, 'f1', 1e-6, 'f2', 5, 'nf', 300); mod = ao(pl_data); mod.setName('psd model'); iplot(mod) %% Building white noise a = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', Nsecs, 'yunits', 'm')); a.setName('white noise') %% Calling the noise generator pl = plist(... 'model', mod, ... % Multiplication by fs needed to preserve energy 'MaxIter', 70, ... 'PoleType', 2, ... 'MinOrder', 30, ... 'MaxOrder', 45, ... 'Weights', 2, ... 'Plot', false,... 'Disp', false,... 'RMSEVar', 8,... 'FitTolerance', 2); ac = noisegen1D(a, pl); %% Spetrum and Transfer function acxx = ac.psd(pls); % spectrum of data iplot(acxx) %% Fitting Sqrt Spectrum - Residuals spectral flatness checking % Fitting parameter list pl_fit1 = plist('FS',fs,... 'AutoSearch','on',... 'StartPoles',[],... 'StartPolesOpt','c2',... 'maxiter',60,... 'minorder',15,... 'maxorder',25,... 'weights',[],... 'weightparam','abs',... 'ResLogDiff',[],... 'ResFlat',0.7,... 'RMSE',6,... 'Plot','off',... 'ForceStability','off',... 'CheckProgress','on'); % Do fit [filt1,bsp1,bspres1,bsprmse1] = zDomainFit(sqrt(acxx./2), pl_fit1); % division by 2 is necessary because acxx is the one-sided psd bsp1.setName('Fit1'); %% iplot(sqrt(acxx./2),bsp1) %% Checing spectral flatness % checking the spectral flatness of the normalized residuals in order to be % sure that the procedure works correctly kk = abs(bspres1./bsp1); rf = utils.math.spflat(kk.data.y); iplot(abs(bspres1./bsp1)) %% Fitting Spectrum - Residuals log difference checking % Fitting parameter list pl_fit2 = plist('FS',fs,... 'AutoSearch','on',... 'StartPoles',[],... 'StartPolesOpt','c2',... 'maxiter',60,... 'minorder',15,... 'maxorder',25,... 'weights',[],... 'weightparam','abs',... 'ResLogDiff',0.5,... 'ResFlat',0.7,... 'RMSE',6,... 'Plot','off',... 'ForceStability','off',... 'CheckProgress','on'); % Do fit [filt2,bsp2,bspres2,bsprmse2] = zDomainFit(sqrt(acxx./2), pl_fit2); % division by 2 is necessary because acxx is the one-sided psd bsp2.setName('Fit2'); %% iplot(sqrt(acxx./2),bsp2) %% Model calculated at the same frequencies of the fit AOs % This step is useful in order to compare the results of the two fitting % procedures f = acxx.data.x; func = '(1e-3./(f).^2 + 1e3./(0.001+f) + 1e5.*f.^2).*1e-10 + 1e-6./((f./7e-2).^2-1).^2 + 1e-5./((f./5e-2).^2-1).^2'; pl_datar = plist('fsfcn', func, 'f', f); modr = ao(pl_datar); modr.setName('psd model'); %% Checking the two fit results % plot the normalized difference between fit results and model data in % order to check the fit accuracy plpl = plist('Legends',{'Fit1','Fit2'}); iplot(abs(bsp1-sqrt(modr))./sqrt(modr),abs(bsp2-sqrt(modr))./sqrt(modr),plpl)