view m-toolbox/classes/@ao/polyfit.m @ 17:7afc99ec5f04 database-connection-manager

Update ao_model_retrieve_in_timespan
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Mon, 05 Dec 2011 16:20:06 +0100
parents f0afece42f48
children
line wrap: on
line source

% POLYFIT overloads polyfit() function of MATLAB for Analysis Objects.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DESCRIPTION: POLYFIT overloads polyfit() function of MATLAB for Analysis
%              Objects. It finds the coefficients of a polynomial P(X) of
%              degree N that fits the data Y best in a least-squares sense:
%              P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1)
%
% CALL:        bs = polyfit(a1, a2, a3, ..., pl)
%              bs = polyfit(as,pl)
%              bs = as.polyfit(pl)
%
% INPUTS:      aN   - input analysis objects with data to be fitted.
%                   X will be a.x
%                   Y will be a.y
%              as   - input analysis objects array
%              pl   - input parameter list
%
% OUTPUTs:     bs  - An array of pest objects, each with the N+1 fitting coefficients P(j)
%
% <a href="matlab:utils.helper.displayMethodInfo('ao', 'polyfit')">Parameters Description</a>
%
% VERSION:     $Id: polyfit.m,v 1.48 2011/05/12 03:37:08 mauro Exp $
%
% EXAMPLES:
% 
%   %% Make fake AO from polyval
%   nsecs = 100;
%   fs    = 10;
%   
%   u = unit('fm s^-2');
%   
%   pl = plist('nsecs', nsecs, 'fs', fs, ...
%     'tsfcn', 'polyval([3 2 1 ], t) + 1000*randn(size(t))', ...
%     'xunits', 's', 'yunits', u);
% 
%   a1 = ao(pl);
%   
%   %% Fit a polynomial
%   N = 3;
%   p1 = polyfit(a1, plist('N', N));
%   p2 = polyfit(a1, plist('N', N, 'rescale', true));
%
%   %% Compute fit: evaluating pest
%   %% Here we need to specify that we want to use the 'x' field of 
%   %% the AO a to build the output AO
%   
%   b1 = p1.eval(plist('type', 'tsdata', 'XData', a1, 'Xfield', 'x'));
%   b2 = p2.eval(a1, plist('type', 'tsdata', 'Xfield', 'x'));
%   
%   %% Plot fit
%   iplot(a1, b1, plist('LineStyles', {'', '--'}));
%
%   %% Remove polynomial
%   c = a1-b1;
%   iplot(c)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function varargout = polyfit(varargin)
  
  % Check if this is a call for parameters
  if utils.helper.isinfocall(varargin{:})
    varargout{1} = getInfo(varargin{3});
    return
  end
  
  import utils.const.*
  utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
  
  % Collect input variable names
  in_names = cell(size(varargin));
  for ii = 1:nargin,in_names{ii} = inputname(ii);end
  
  % Collect all AOs and plists
  [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
  pl              = utils.helper.collect_objects(varargin(:), 'plist', in_names);
  
  if nargout == 0
    error('### polyfit can not be used as a modifier method. Please give at least one output');
  end
  
  % Combine plists
  use_pl = parse(pl, getDefaultPlist);
  
  % Degree of polynomial to fit
  N       = find(use_pl, 'N');
  
  % Center and rescale the data
  rescale = utils.prog.yes2true(find(use_pl, 'rescale'));
  
  % Loop over input AOs
  for jj = 1 : numel(as)
        
    if isa(as(jj).data, 'cdata')
      warning('!!! Can''t fit to cdata objects. Skipping AO %s', ao_invars{jj});
      bs = [];
    else      
      % Fit polynomial
      mu = [];
      if rescale
        [p,s,mu] = polyfit(as(jj).x, as(jj).y, N);
      else
        [p,s] = polyfit(as(jj).x, as(jj).y, N);
      end
            
      % prepare models, units, names
      model = [];
      for kk = 1:N+1        
        names{kk} = ['P' num2str(kk)];        
        units{kk} = as(jj).yunits ./ ((as(jj).xunits).^(N-kk+1)); 
        if kk == 1
          model = [model 'P' num2str(kk) '*X.^' num2str(N-kk+1)];
        else
          model = [model ' + P' num2str(kk) '*X.^' num2str(N-kk+1)];
        end
      end
      model = smodel(plist('expression', model, ...
        'params', names, ...
        'values', p, ...
        'xvar', 'X', ...
        'xunits', as(jj).xunits, ...
        'yunits', as(jj).yunits ...
        ));
      
      % Build new pest objects from these N+1 coefficients
      bs(jj) = pest;
      bs(jj).setY(p);
      bs(jj).setDof(s.df);
      bs(jj).setNames(names{:});
      bs(jj).setYunits(units);
      bs(jj).setModels(model);
      bs(jj).name = sprintf('polyfit(%s)', ao_invars{jj});
      bs(jj).addHistory(getInfo('None'), use_pl, ao_invars(jj), as(jj).hist);
      % Set procinfo object with some data
      bs(jj).procinfo = plist('S', s, 'mu', mu);
      
    end
    
  end
  
  % Set output
  varargout = utils.helper.setoutputs(nargout, bs);

end

%--------------------------------------------------------------------------
% Get Info Object
%--------------------------------------------------------------------------
function ii = getInfo(varargin)
  if nargin == 1 && strcmpi(varargin{1}, 'None')
    sets = {};
    pl   = [];
  else
    sets = {'Default'};
    pl   = getDefaultPlist();
  end
  % Build info object
  ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: polyfit.m,v 1.48 2011/05/12 03:37:08 mauro Exp $', sets, pl);
  ii.setModifier(false);
  ii.setArgsmin(1);
end

%--------------------------------------------------------------------------
% Get Default Plist
%--------------------------------------------------------------------------
function plout = getDefaultPlist()
  persistent pl;  
  if ~exist('pl', 'var') || isempty(pl)
    pl = buildplist();
  end
  plout = pl;  
end

function pl = buildplist()
  pl = plist();
  
  % N
  p = param({'N','Degree of polynomial to fit.'}, {2, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, paramValue.SINGLE});
  pl.append(p);
  
  % Rescale
  p = param({'rescale',['set to ''true'' or ''false'' to center and ', ...
    'rescale the data before fitting.<br>', ...
    'See "help polyfit" for further details.']}, paramValue.FALSE_TRUE);  
  pl.append(p);
  
end

% END