Mercurial > hg > ltpda
view m-toolbox/m/sigproc/frequency_domain/ltpda_spsd.m @ 17:7afc99ec5f04 database-connection-manager
Update ao_model_retrieve_in_timespan
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% ltpda_spsd smooths a spectrum. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: ltpda_spsd smooths a spectrum. % % CALL: [freqsOut, pow, nFreqs, sigmaP, sumMat] = ltpda_spsd(freqs, pow, linCoef, logCoef, sumMat,nFreqs) % % INPUTS: freqsOut - frequency vector, can be left empty % pow - power spectrum (density) % nFreqs - frequency intervals used to derive averages % linCoef, logCoef % - values to use to scale the smoothing % averaging filter. It will be in linCoef.NBins^logCoef. % logCoef should be 2/3 for PSD and 4/5 for PSD data % which is later plotted in ASD scale. % mode - 'keepFrequencies' convoles using a filter, leaving all % frequencies but they are correlated % 'removeFrequencies' convoles using a filter, leaving % only data at some uncorrelated frequencies % 'addUp' like above, but sums up instead of takin a % mean value. % % OUTPUTS: freqs, pow : output frequency and power vector. % % <a href="matlab:web(ao.getInfo('spsd').tohtml, '-helpbrowser')">Parameter Sets</a> % % VERSION: $Id: ltpda_spsd.m,v 1.4 2011/02/21 16:55:21 adrien Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = ltpda_spsd(varargin) %% collecting inputs freqs = varargin{1}; pow = varargin{2}; L = length(pow); pow = reshape(pow, [L, 1]); freqs = reshape(freqs, [numel(freqs), 1]); linCoef = varargin{3}; logCoef = varargin{4}; if nargin >4 % optional inputs include the averaging matrix sumMat = varargin{5}; nFreqs = varargin{6}; else % averaging matrix must be computed from input data [nFreqs, sumMat] = getMatrix(L, linCoef, logCoef); end %% evaluating output computeVar = nargout>=4; computeFreqs = ~isempty(freqs); sumPow = sumMat * pow; % power sums powOut = sumPow ./ nFreqs; % power average if computeFreqs freqsOut = (sumMat * freqs) ./ nFreqs; % correponding mean frequency else freqsOut = []; end if computeVar nBinsEff = sumPow.^2 ./ (sumMat * pow.^2) ; % number of Chi2 variables for STD else nBinsEff = []; end %% allocating output varargout = {freqsOut, powOut, nFreqs, nBinsEff, sumMat}; end function [nFreqs, sumMat] = getMatrix(L, linCoef, logCoef) %% initializing loop iAvg = 1; iMin = 1; idxAvg = zeros(1,L); % index of corresponding average widths = ceil(linCoef):ceil(linCoef * L^logCoef + 2); % proposed width of averagin filter iMaxForWidths = min(L, floor( (widths./linCoef).^(1/logCoef) + widths-1 ) ); % last sample to be processed with a given filter width lastWidth = find(iMaxForWidths==L,1,'first'); % width when the end fo te freq. series is reached %% 1st loop on filter width for iiWidth = 1:lastWidth NAverages = ceil( (iMaxForWidths(iiWidth)-iMin+1) / widths(iiWidth) ); % number of times the width avgWidth is going to be used for kk=1:NAverages %% second loop on filter iteration iMax = min(L, iMin + widths(iiWidth)-1); % last sample for current average idxAvg(iMin:iMax) = ones(1,iMax-iMin+1) * iAvg; % index of corresponding average iMin = iMax + 1; iAvg = iAvg + 1; end end %% creating output data sumMat = sparse(idxAvg, 1:L, ones(1,L)); nFreqs = sumMat*ones(L,1); end