Mercurial > hg > ltpda
view m-toolbox/test/diagnostics/test_ltpda_arma_time.m @ 17:7afc99ec5f04 database-connection-manager
Update ao_model_retrieve_in_timespan
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
function test_ltpda_arma_time() % A test script for the ltpda_arma_time function % % miquel 20-02-08 % % $Id: test_ltpda_arma_time.m,v 1.1 2008/03/04 12:55:05 miquel Exp $ % %% Make test AOs fs=1; nsecs=10000; pl = plist(); pl = append(pl, param('nsecs',nsecs)); pl = append(pl, param('fs',fs)); pl = append(pl,param('tsfcn','(heaviside(t-1000.5)).*(1-(exp(-(t-1000.5)/300))+(exp(-(t-1000.5)/500)-1))')); ain = ao(pl); % Filter input time-series pl = append(pl, param('type', 'highpass')); pl = append(pl, param('ripple', 5e-1)); pl = append(pl, param('order', 1)); pl = append(pl, param('gain', 1e-1)); pl = append(pl, param('fc', 1e-3)); f = miir(pl); [aout, fout] = filter(ain,plist(param('filter',f))); % Add independent noise to both channels pn1 = plist('waveform', 'noise','type','Uniform','fs', fs, 'nsecs', nsecs); an1 = ao(pn1); ain = ain + 1e-3*an1; pn2 = plist('waveform', 'noise','type','Uniform','fs', fs, 'nsecs', nsecs); an2 = ao(pn2); aout = aout + 1e-3*an2; %% Find ARMA parameters for the transfer function % Parameter list for ltpda_arma_time pl = append(pl, param('MaxIter',1e3)); pl = append(pl, param('MaxFunEvals',1e3)); pl = append(pl, param('TolX',1e-7)); pl = append(pl, param('TolFun',1e-7)); pl = append(pl, param('ARMANum',2)); pl = append(pl, param('ARMADen',1)); % Use ltpda_arma_time ao_arma = ltpda_arma_time(ain, aout, pl); % disp(sprintf('\r! Filter parameters:\r')) disp(sprintf('%d\t', fout.a,fout.b(2:length(fout.b)))) disp(sprintf('\r! Estimated parameters:\r')) disp(sprintf('%d\t',ao_arma.data.y(1:length(ao_arma.data.y)-1))) % Compute fitted output p = find(pl, 'ARMANum'); q = find(pl, 'ARMADen'); f = miir([ao_arma.data.y(1:p)],[1 ao_arma.data.y(p+1:p+q)],find(pl,'fs')); [afit, ffit] = filter(ain,plist(param('filter',f))); % Plot iplot(ain,aout,afit,plist('Legends', {'Input','Output','Fit'})) % %% Plot history % figure % plot(ao_arma.hist) % % %% Reproduce from history % % % Write an m-file from AO % ao2m(ao_arma, 'ltpda_test.m'); % % % now run it % clear all; % a_out = ltpda_test; % % % iplot(a_out) % % figure % plot(a_out.hist) %% Delete test files % delete('ltpda_test.m');