view m-toolbox/classes/+utils/@math/diffStepFish.m @ 50:7d2e2e065cf1 database-connection-manager

Update unit tests
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 07 Dec 2011 17:24:37 +0100
parents f0afece42f48
children
line wrap: on
line source

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Look for differentiation step for a given parameter and
%
%  Parameters are:

%
% $Id: diffStepFish.m,v 1.2 2011/09/19 06:17:45 miquel Exp $
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function best = diffStepFish(i1,i2,S11,S12,S21,S22,N,meval,params,ngrid,ranges,freqs,inNames,outNames)

% remove aux file if existing
if exist('diffStepFish.txt') == 2
    ! rm diffStepFish.txt
end

step = ones(ngrid,numel(params));
% build matrix of steps
% for ii = 1:length(params)
%       step(:,ii) = [] logspace(ranges(1,ii),ranges(2,ii),ngrid);
% end
for ii = 1:ngrid
    step(ii,:) = ranges(1,:);
end

% step(:,1) = logspace(ranges(1,1),ranges(2,1),ngrid);

for kk = 1:length(params)
    step(:,kk) = logspace(log10(ranges(1,kk)),log10(ranges(2,kk)),ngrid);
    Rmat = [];
    for jj = 1:ngrid
        for ii = 1:length(params)
            tic
            % differentiate numerically
            dH = meval.parameterDiff(plist('names', params(ii),'values',step(jj,ii)));
            % create plist with correct outNames (since parameterDiff change them)
            out1 = strrep(outNames{1},'.', sprintf('_DIFF_%s.',params{ii})); % 2x2 case
            out2 =strrep(outNames{2},'.', sprintf('_DIFF_%s.',params{ii}));
            spl = plist('set', 'for bode', ...
                'outputs', {out1,out2}, ...
                'inputs', inNames, ...
                'reorganize', true,...
                'f', freqs);
            % do bode
            d  = bode(dH, spl);
            % assign according matlab's matrix notation:
            % H(1,1)->h(1)  H(2,1)->h(2)  H(1,2)->h(3)  H(2,2)->h(4)
            d11(ii) = d.objs(1);
            d21(ii) = d.objs(2);
            d12(ii) = d.objs(3);
            d22(ii) = d.objs(4);
            
        end
        
        fs = S11.fs;
        % scaling of PSD
        % PSD = 2/(N*fs) * FFT *conj(FFT)
        C11 = N*fs/2.*S11.y;
        C22 = N*fs/2.*S22.y;
        C12 = N*fs/2.*S12.y;
        C21 = N*fs/2.*S21.y;
        
        % compute elements of inverse cross-spectrum matrix
        InvS11 = (C22./(C11.*C22 - C12.*C21));
        InvS22 = (C11./(C11.*C22 - C12.*C21));
        InvS12 = (C21./(C11.*C22 - C12.*C21));
        InvS21 = (C12./(C11.*C22 - C12.*C21));
        
        
        % compute Fisher Matrix
        for i =1:length(params)
            for j =1:length(params)
                
                v1v1 = conj(d11(i).y.*i1.y + d12(i).y.*i2.y).*(d11(j).y.*i1.y + d12(j).y.*i2.y);
                v2v2 = conj(d21(i).y.*i1.y + d22(i).y.*i2.y).*(d21(j).y.*i1.y + d22(j).y.*i2.y);
                v1v2 = conj(d11(i).y.*i1.y + d12(i).y.*i2.y).*(d21(j).y.*i1.y + d22(j).y.*i2.y);
                v2v1 = conj(d21(i).y.*i1.y + d22(i).y.*i2.y).*(d11(j).y.*i1.y + d12(j).y.*i2.y);
                
                FisMat(i,j) = sum(real(InvS11.*v1v1 + InvS22.*v2v2 - InvS12.*v1v2 - InvS21.*v2v1));
            end
        end
        
        detFisMat = det(FisMat);
        R = [step(jj,:) detFisMat];
        save('diffStepFish.txt','R','-ascii','-append');
        Rmat = [Rmat; R];
        
        toc
    end
    
    % look for the stable step: compute diff and
    % look for the smallest one in absolute value
    % The smallest slope marks the plateau
    diffDetFisMat = abs(diff(Rmat(:,end)));
    lowdet = diffDetFisMat(1);
    ind = 2;
    for k = 1:numel(diffDetFisMat) 
        if diffDetFisMat(k) < lowdet
            lowdet = diffDetFisMat(k);
            ind = k+1; % index give by diff = x(2) - x(1). We take the step corresponding to x(2)
        end
    end
    
    step(:,kk) = step(jj,kk)*ones(ngrid,1);
    
end

step(:,end) = logspace(log10(ranges(1,end)),log10(ranges(2,end)),ngrid);
best = step(1,:);

end