line source
+ − % STEADYSTATE returns a possible value for the steady state of an ssm.
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % DESCRIPTION: STEADYSTATE returns a possible value for the steady state
+ − % of the state space of an ssm with given inputs.
+ − %
+ − % CALL: [pl_out] = steadyState(sys, pl)
+ − %
+ − % INPUTS:
+ − % - sys, an ssm object
+ − %
+ − % OUTPUTS:
+ − % _ pl_out contains 'state', the random state position
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('ssm', 'steadyState')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: steadyState.m,v 1.11 2011/04/08 08:56:23 hewitson Exp $
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − % TO DO: Check input aos for the timestep, tsdata, and ssm.timestep
+ − % options to be defined (NL case)
+ − % add check if one input mach no ssm input variable
+ − % allow use of other LTPDA functions to generate white noise
+ −
+ −
+ − function varargout = steadyState(varargin)
+ −
+ − %% starting initial checks
+ −
+ − % Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]);
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all SSMs and plists
+ − [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names);
+ − [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist');
+ − if ~isempty(rest)
+ − pl = combine(pl, plist(rest{:}));
+ − end
+ − pl = combine(pl, getDefaultPlist());
+ −
+ − %% begin function body
+ −
+ − if numel(sys)~=1
+ − error('simulate needs exactly one ssm as an input')
+ − end
+ − if ~sys.isnumerical
+ − error(['error because system ',sys.name,' is not numerical']);
+ − end
+ − timestep = sys.timestep;
+ − if timestep==0
+ − error('timestep should not be 0 in steadyState!!')
+ − end
+ − if pl.isparam('noise variable names')
+ − error('The noise option used must be split between "covariance" and "cpsd". "noise variable names" does not exist anymore!')
+ − end
+ − sssizes = sys.sssizes;
+ − %% collecting simulation i/o data
+ −
+ − constants_in = find(pl, 'constants');
+ − cov_in = find(pl, 'covariance');
+ − cpsd_in = find(pl, 'CPSD');
+ − noise_in = blkdiag(cov_in, cpsd_in/(timestep*2));
+ − [U1,S1,V1] = svd(noise_in.');
+ − if (sum(S1<0)>0)
+ − error('Covariance matrix is not positive definite')
+ − end
+ − noise_mat = U1*sqrt(S1);
+ −
+ − %% modifying system's ordering
+ − if find(pl, 'reorganize')
+ − sys = reorganize(sys, pl, 'set', 'for simulate', 'internal', 'internal');
+ − end
+ −
+ − %% getting system's i/o sizes
+ − inputSizes = sys.inputsizes;
+ −
+ − Nnoise = inputSizes(2);
+ − Nconstants = inputSizes(3);
+ −
+ − if numel(diag(noise_in))~=Nnoise
+ − error(['There are ' num2str(numel(diag(noise_in))) ' input noise variances and ' num2str(Nnoise) ' corresponding inputs indexed.' ])
+ − elseif numel(constants_in)~=Nconstants
+ − error(['There are ' num2str(numel(constants_in)) ' input constants and ' num2str(Nconstants) ' corresponding inputs indexed.' ])
+ − end
+ −
+ − A = sys.amats{1,1};
+ − Bnoise = sys.bmats{1,2} * noise_mat;
+ − Bcst = sys.bmats{1,3} * reshape(constants_in, Nconstants, 1);
+ −
+ − %% counting powers of 2 to use for initilization
+ − nSteps = 500;
+ − tSteady = find(pl, 'tSteady');
+ − nPow2 = nextpow2(tSteady/(nSteps*timestep));
+ −
+ − %% simulation loop
+ − A_pow2=cell(1,nPow2);
+ − G_pow2=cell(1,nPow2);
+ −
+ − A_pow2{1} = A;
+ − G_pow2{1} = Bcst;
+ −
+ − %% method 1 : iterate equations with growing time-step for a very long time
+ − E_pow2=cell(1,nPow2);
+ − E_pow2{1} = Bnoise;
+ − for i_pow2 = 2:nPow2
+ − G_pow2{i_pow2} = G_pow2{i_pow2-1} + A_pow2{i_pow2-1}*G_pow2{i_pow2-1};
+ − E_pow2{i_pow2} = E_pow2{i_pow2-1} + A_pow2{i_pow2-1}*E_pow2{i_pow2-1};
+ − A_pow2{i_pow2} = A_pow2{i_pow2-1}^2;
+ − end
+ − lastX = zeros(size(A,1),1);
+ − for i_pow2 = fliplr(1:nPow2)
+ − A = A_pow2{i_pow2};
+ − G = G_pow2{i_pow2};
+ − E = E_pow2{i_pow2};
+ − noise_array = randn(size(E,2), nSteps);
+ − for i_steps = 1:nSteps
+ − lastX = A*lastX + G + E*noise_array(:,i_steps) ;
+ − end
+ − end
+ −
+ − %% method 2 : compute the limit state-mean and covariance as i_pow2 tends to infinity
+ − % P_pow2=cell(1,nPow2);
+ − % P_pow2{1} = Bnoise*Bnoise.';
+ − % for i_pow2 = 2:nPow2
+ − % G_pow2{i_pow2} = G_pow2{i_pow2-1} + A_pow2{i_pow2-1}*G_pow2{i_pow2-1}; % taking step response to 2 longer time;
+ − % P_pow2{i_pow2} = P_pow2{i_pow2-1} + A_pow2{i_pow2-1}*P_pow2{i_pow2-1}*(A_pow2{i_pow2-1}.');% taking state covariance to 2 longer time;
+ − % A_pow2{i_pow2} = A_pow2{i_pow2-1}^2;
+ − % end
+ − % [U1,S1,V1] = svd(P_pow2{nPow2});
+ − % lastX = U1*sqrt(S1)*randn(size(A,1),1) + G_pow2{nPow2};
+ −
+ − %% construct output analysis object
+ − plist_out = plist('state', ssm.blockMatRecut(lastX,sssizes,1) );
+ − varargout = {plist_out};
+ − end
+ −
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ −
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − else
+ − sets = {'Default'};
+ − pl = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: steadyState.m,v 1.11 2011/04/08 08:56:23 hewitson Exp $', sets, pl);
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function pl = getDefaultPlist()
+ − pl = plist();
+ −
+ − p = param({'cpsd variable names', 'A cell-array of strings specifying the desired input variable names.'}, {} );
+ − pl.append(p);
+ −
+ − p = param({'cpsd', 'The covariance of this noise between input ports for the <i>time-continuous</i> noise model.'}, []);
+ − pl.append(p);
+ −
+ − p = param({'covariance variable names', 'A cell-array of strings specifying the desired input variable names.'}, {} );
+ − pl.append(p);
+ −
+ − p = param({'covariance', 'The covariance of this noise between input ports for the <i>time-continuous</i> noise model.'}, []);
+ − pl.append(p);
+ −
+ − p = param({'constant variable names', 'A cell-array of strings of the desired input variable names.'}, {});
+ − pl.append(p);
+ −
+ − p = param({'constants', 'Array of DC values for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1)));
+ − pl.append(p);
+ −
+ − p = param({'tSteady', 'The settling time used in the calculation, in the same unit as the ssm''s timestep'}, paramValue.DOUBLE_VALUE(10^6) );
+ − pl.append(p);
+ −
+ − p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE);
+ − pl.append(p);
+ −
+ − end
+ −