Mercurial > hg > ltpda
view m-toolbox/test/test_ao_cohere_variance_montecarlo.m @ 50:7d2e2e065cf1 database-connection-manager
Update unit tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 07 Dec 2011 17:24:37 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% test_ao_cohere_variance_montecarlo % % Tests that the standard deviation returned by ao.dy in one % frequency bin is equivalent to the matlab's std taking % considering all realisations % % M Nofrarias 22-07-09 % % $Id: test_ao_cohere_variance_montecarlo.m,v 1.1 2009/08/11 14:20:10 miquel Exp $ % function test_ao_cohere_variance_montecarlo() clear % data nsecs = 200; fs = 10; pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'sin(2*pi*2*t) + randn(size(t))'); % Make a filter f1 = miir(plist('type', 'highpass', 'fc', 4, 'fs', fs)); % Window Nfft = 100; win = specwin('Hanning', Nfft); pl2 = plist('Nfft',Nfft, 'win',win,'Olap',0) % loop for i = 1:100 a1 = ao(pl); a2 = filter(a1,plist('filter', f1)); c1(i) = cohere(a1,a2,plist('Nfft',100,'type','MS')); % Do with MATLAB [cxy, f] = mscohere(a1.data.y, a2.data.y, win.win, Nfft/2, Nfft, a1.data.fs); c2(i) = ao(fsdata(f, cxy)); end %% mean index = 6; % compare mean mn = [mean(c1(:).y(index)) mean(c2(:).y(index))] % error err = std(c1(:).y(index)) % compare standard deviation clear rel for i =1:len(c1(1)) mn(i) = [mean(c1(:).y(i))]; % both means are equal rel(:,i) = [std(c1(:).y(i)) mean(c1(:).dy(i))]/abs(mn(i)); end figure loglog(c1(1).x,rel') figure loglog(c1(1).x(:),100*abs(rel(2,:)-rel(1,:))) ylabel('difference (%)')