view m-toolbox/html_help/help/ug/ao_convert_content.html @ 12:86aabb42dd84
database-connection-manager
Use utils.repository utilities
author
Daniele Nicolodi <nicolodi@science.unitn.it>
date
Mon, 05 Dec 2011 16:20:06 +0100 (2011-12-05)
parents
f0afece42f48
children
line source
+ − <!-- $Id: ao_convert_content.html,v 1.3 2008/03/03 09:08:10 hewitson Exp $ -->
+ − <p>
+ − In some cases it is desirable to build AOs 'by hand' from existing data files. If the data file
+ − doesn't conform to one of the existing AO constructors, then a conversion script can easily be
+ − written to create AOs from your data files.
+ − </p>
+ − <p>The following example shows how to convert an ASCII data file into Analysis Objects. The data file
+ − has 4 columns representing 4 different data channels. All 4 channels are sampled at the same rate of
+ − 10Hz. The conversion function returns 4 AOs.</p>
+ −
+ − <div class="fragment"><pre> <span class="code"> function b = myConverter(filename, fs)</span>
+ −
+ − <span class="comment">% MYCONVERTER converts a multi-column ASCII data file into multiple AOs.</span>
+ − <span class="comment">%</span>
+ − <span class="comment">% usage: b = myConverter(filename, fs)</span>
+ − <span class="comment">%</span>
+ − <span class="comment">% Inputs:</span>
+ − <span class="comment">% filename - name of input data file</span>
+ − <span class="comment">% fs - sample rate of input data</span>
+ − <span class="comment">%</span>
+ − <span class="comment">% Outputs:</span>
+ − <span class="comment">% b - vector of AOs</span>
+ − <span class="comment">%</span>
+ − <span class="comment">%</span>
+ −
+ − <span class="comment">% Load the data from text file</span>
+ − data_in = load(filename);
+ − ncols = size(data_in, 2);
+ −
+ − <span class="comment">% Create AOs</span>
+ − b = [];
+ − <span class="keyword">for</span> j=1:ncols
+ −
+ − <span class="comment">% Get this column of data</span>
+ − d = data_in(:,j);
+ −
+ − <span class="comment">% name for this data</span>
+ − dataName = [<span class="string">'column'</span> num2str(j)];
+ −
+ − <span class="comment">% Make tsdata object</span>
+ − ts = tsdata(d, fs);
+ − <span class="comment">% set name of data object</span>
+ − ts = set(ts, <span class="string">'name'</span>, dataName);
+ − <span class="comment">% set xunits to seconds</span>
+ − ts = set(ts, <span class="string">'xunits'</span>, <span class="string">'s'</span>);
+ − <span class="comment">% set xunits to Volts</span>
+ − ts = set(ts, <span class="string">'yunits'</span>, <span class="string">'V'</span>);
+ −
+ − <span class="comment">% make history object</span>
+ − h = history(<span class="string">'myConverter'</span>, <span class="string">'0.1'</span>, plist(param(<span class="string">'filename'</span>, filename)));
+ −
+ − <span class="comment">% make AO</span>
+ − a = ao(ts, h);
+ −
+ − <span class="comment">% set AO name</span>
+ − a = set(a, <span class="string">'name'</span>, dataName);
+ −
+ − <span class="comment">% add to output vector</span>
+ − b = [b a];
+ −
+ − <span class="keyword">end</span></pre></div>
+ −
+ − <br>
+ − <p>
+ − The script works by loading the four columns of data from the ASCII file into a matrix. The
+ − script then loops over the number of columns and creates an AO for each column.
+ − </p>
+ − <p>First a time-series (<tt>tsdata</tt>) object is made from the data in a column and given the
+ − input sample rate of the data. The 'name', 'xunits', and 'yunits' fields of the time-series data
+ − object are then set using calls to the <tt>set</tt> method of the <tt>tsdata</tt> class.
+ − </p>
+ − <p>
+ − Next a history object is made with its 'name' set to 'myConverter', the version set to '0.1',
+ − and the input filename is recorded in a parameter list attached to the history object.
+ − </p>
+ − <p>
+ − Following the creation of the data object and the history object, we can then create an
+ − Analysis Object. The name of the AO is then set and the object is added to a vector that is
+ − output by the function.
+ − </p>