Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/constructor_examples_rational_content.html @ 12:86aabb42dd84 database-connection-manager
Use utils.repository utilities
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
<!-- $Id: constructor_examples_rational_content.html,v 1.1 2009/02/27 16:51:57 ingo Exp $ --> <!-- -------------------------------------------------- --> <!-- --------------- BEGIN CONTENT FILE --------------- --> <!-- -------------------------------------------------- --> <!-- --------------- Link box: begin --------------- --> <table border="0" summary="Simple list" class="simplelist_nottable_last"> <tr> <td> <a href="constructor_examples_rational.html#copy">Copy an rational object</a> </td> </tr> <tr> <td> <a href="constructor_examples_rational.html#xml_file">Construct an rational object by loading the object from a file</a> </td> </tr> <tr> <td> <a href="constructor_examples_rational.html#rational">Construct an rational object from an parfrac object</a> </td> </tr> <tr> <td> <a href="constructor_examples_rational.html#pzmodel">Construct an rational object from a pole/zero model</a> </td> </tr> <tr> <td> <a href="constructor_examples_rational.html#coeffs">Construct an rational object from numerator and denominator coefficients</a> </td> </tr> <tr> <td> <a href="constructor_examples_rational.html#plist">Construct an rational object from a parameter list object (PLIST)</a> </td> </tr> </table> <!-- --------------- NEXT EXAMPLE --------------- --> <hr> <h2 class="title"><a name="copy"></a>Copy an rational object</h2> <p>The following example creates a copy of an rational object (blue command).</p> <div class="fragment"><pre class="programlisting"> >> ra1 = rational([1 2 3], [4 5 6 7], <span class="string">'my rational'</span>); <span class="blue">>> ra2 = rational(ra1)</span> ---- rational 1 ---- model: my rational num: [1 2 3] den: [4 5 6 7] iunits: [] ounits: [] -------------------- </pre></div> <br></br> <p>REMARK: The following command copies only the handle of an object and doesn't create a copy of the object (as above). This means that everything that happens to the copy or original happens to the other object.</p> <div class="fragment"><pre class="programlisting"> >> ra1 = rational() ---- rational 1 ---- model: none num: [] den: [] iunits: [] ounits: [] -------------------- >> ra2 = ra1; >> ra2.setName(<span class="string">'my new name'</span>) ---- rational 1 ---- model: <span class="string">my new name</span> num: [1 2 3] den: [4 5 6 7] iunits: [] ounits: [] -------------------- </pre></div> <br></br> <p>If we display ra1 again then we see that the property 'name' was changed although we only have changed ra2.</p> <div class="fragment"><pre class="programlisting"> >> ra1 ---- rational 1 ---- model: <span class="string">my new name</span> num: [1 2 3] den: [4 5 6 7] iunits: [] ounits: [] -------------------- </pre></div> <!-- --------------- NEXT EXAMPLE --------------- --> <hr> <h2 class="title"><a name="xml_file"></a>Construct an rational object by loading the object from a file</h2> <p>The following example creates a new rational object by loading the object from disk.</p> <div class="fragment"><pre class="programlisting"> ra = rational(<span class="string">'rational_object.mat'</span>) ra = rational(<span class="string">'rational_object.xml'</span>) </pre></div> <p>or in a <tt>PLIST</tt></p> <div class="fragment"><pre class="programlisting"> pl = plist(<span class="string">'filename'</span>, <span class="string">'rational_object.xml'</span>); ra = rational(pl) </pre></div> <!-- --------------- NEXT EXAMPLE --------------- --> <hr> <h2 class="title"><a name="rational"></a>Construct an rational object from an parfrac object</h2> <p>The following example creates a new rational object from an parfrac object.</p> <div class="fragment"><pre class="programlisting"> >> pf = parfrac([1 2+1i 2-1i], [6 1+3i 1-3i], 3, <span class="string">'my parfrac'</span>) ---- parfrac 1 ---- model: my parfrac res: [1;2+i*1;2-i*1] poles: [6;1+i*3;1-i*3] dir: 3 pmul: [1;1;1] iunits: [] ounits: [] ------------------- >> ra = rational(pf) ---- rational 1 ---- model: rational(my parfrac) num: [3 -19 30 -110] den: [1 -8 22 -60] iunits: [] ounits: [] -------------------- </pre></div> <p>or in a plist</p> <div class="fragment"><pre class="programlisting"> >> pf = parfrac([1 2+1i 2-1i], [6 1+3i 1-3i], 3, <span class="string">'my parfrac'</span>); >> pl = plist(<span class="string">'rational'</span>, rat) >> ra = rational(pl) </pre></div> <!-- --------------- NEXT EXAMPLE --------------- --> <hr> <h2 class="title"><a name="pzmodel"></a>Construct an rational object from a pole/zero model</h2> <p>The following example creates a new rational object from a pole/zero model.</p> <div class="fragment"><pre class="programlisting"> >> pzm = pzmodel(1, {1 2 3}, {4 5}, <span class="string">'my pzmodel'</span>) ---- pzmodel 1 ---- name: my pzmodel gain: 1 delay: 0 iunits: [] ounits: [] pole 001: (f=1 Hz,Q=NaN) pole 002: (f=2 Hz,Q=NaN) pole 003: (f=3 Hz,Q=NaN) zero 001: (f=4 Hz,Q=NaN) zero 002: (f=5 Hz,Q=NaN) ------------------- >> ra = rational(pzm) ---- rational 1 ---- model: rational(None) num: [0.0012 0.0716 1] den: [0.0001 0.0036 0.0401 0.2122 1] iunits: [] ounits: [] -------------------- </pre></div> <p>or in a plist</p> <div class="fragment"><pre class="programlisting"> >> pzm = pzmodel(1, {1 2 3}, {4 5}, <span class="string">'my pzmodel'</span>) >> pl = plist(<span class="string">'pzmodel'</span>, pzm) >> ra = rational(pl) </pre></div> <!-- --------------- NEXT EXAMPLE --------------- --> <hr> <h2 class="title"><a name="coeffs"></a>Construct an rational object from numerator and denominator coefficients</h2> <p>The following example creates a new rational direct from the numerator and denominator coefficients.</p> <div class="fragment"><pre class="programlisting"> >> num = [1 2 3]; >> den = [4 5 6]; >> name = <span class="string">'my rational'</span>; >> iunits = <span class="string">'Hz'</span>; >> ounits = <span class="string">'V'</span>; >> ra = rational(num, den) >> ra = rational(num, den, name) >> ra = rational(num, den, name, iunits, ounits) ---- rational 1 ---- model: my rational num: [1 2 3] den: [4 5 6] iunits: [Hz] ounits: [V] -------------------- </pre></div> <!-- --------------- NEXT EXAMPLE --------------- --> <hr> <h2 class="title"><a name="plist"></a>Construct an rational object from a parameter list (<tt>plist</tt>)</h2> <p>Constructs an rational object from the description given in the parameter list.</p> <!-- --------------- Link box: begin --------------- --> <table border="0" summary="Simple list" class="simplelist_nottable_last"> <tr> <td> <a href="constructor_examples_rational.html#hostname">Use the key word 'hostname'</a> </td> </tr> <tr> <td> <a href="constructor_examples_rational.html#pl_coeffs">Use the key word 'num' or 'den'</a> </td> </tr> </table> <!-- --------------- Link box: end --------------- --> <!-- --------------- 'hostname' --------------- --> <hr> <h3 class="title"><a name="hostname"></a>Use the key word 'hostname'</h3> <p>Construct an rational object by retrieving it from a LTPDA repository.</p> <p>The relevant parameters are:</p> <p> <table cellspacing="0" border="0" cellpadding="2" class="simplelist_nottable_last" width="80%"> <colgroup> <col width="25%"/> <col width="75%"/> </colgroup> <thead> <tr valign="top"> <th class="subcategorylist">Key</th> <th class="subcategorylist">Description</th> </tr> </thead> <tbody> <tr valign="top"> <td> <p>'hostname'</p> </td> <td> <p>the repository hostname. [default: 'localhost']</p> </td> </tr> <tr valign="top"> <td> <p>'database'</p> </td> <td> <p>The database name [default: 'ltpda']</p> </td> </tr> <tr valign="top"> <td> <p>'id'</p> </td> <td> <p>A vector of object IDs. [default: []]</p> </td> </tr> <tr valign="top"> <td> <p>'cid'</p> </td> <td> <p>Retrieve all rational objects from a particular collection</p> </td> </tr> <tr valign="top"> <td> <p>'binary'</p> </td> <td> <p>Set to 'yes' to retrieve from stored binary representation (not always available). [default: yes]</p> </td> </tr> </tbody> </table> </p> <div class="fragment"><pre class="programlisting"> pl = plist(<span class="string">'hostname'</span>, <span class="string">'130.75.117.67'</span>, <span class="string">'database'</span>, <span class="string">'ltpda_test'</span>, <span class="string">'id'</span>, 1) a1 = rational(pl) </pre></div> <!-- --------------- 'direct_terms' --------------- --> <hr> <h3 class="title"><a name="direct_terms"></a>Use the key word 'num' or 'den'</h3> <p>Construct an rational object direct from the coefficients.<br></br> The relevant parameters are:</p> <p> <table cellspacing="0" border="0" cellpadding="2" class="simplelist_nottable_last" width="80%"> <colgroup> <col width="25%"/> <col width="75%"/> </colgroup> <thead> <tr valign="top"> <th class="subcategorylist">Key</th> <th class="subcategorylist">Description</th> </tr> </thead> <tbody> <tr valign="top"> <td> <p>'num'</p> </td> <td> <p>numerator coefficients [default: []]</p> </td> </tr> <tr valign="top"> <td> <p>'den'</p> </td> <td> <p>denominator coefficients [default: []]</p> </td> </tr> </tbody> </table> </p> <p>You can also specify optional parameters:</p> <p> <table cellspacing="0" border="0" cellpadding="2" class="simplelist_nottable_last" width="80%"> <colgroup> <col width="25%"/> <col width="75%"/> </colgroup> <thead> <tr valign="top"> <th class="subcategorylist">Key</th> <th class="subcategorylist">Description</th> </tr> </thead> <tbody> <tr valign="top"> <td> <p>'name'</p> </td> <td> <p>name of the rational object [default: 'none']</p> </td> </tr> <tr valign="top"> <td> <p>'xunits'</p> </td> <td> <p>unit of the x-axis</p> </td> </tr> <tr valign="top"> <td> <p>'yunits'</p> </td> <td> <p>unit of the y-axis</p> </td> </tr> </tbody> </table> </p> <div class="fragment"><pre class="programlisting"> num = [1 2 3]; den = [4 5 6]; name = <span class="string">'my rational'</span>; iunits = <span class="string">'Hz'</span>; ounits = <span class="string">'V'</span>; pl = plist(<span class="string">'num'</span>, num, <span class="string">'den'</span>, den); ra = rational(pl) ---- rational 1 ---- model: None num: [1 2 3] den: [4 5 6] iunits: [] ounits: [] -------------------- pl = plist(<span class="string">'num'</span>, num, <span class="string">'den'</span>, den, <span class="string">'name'</span>, name, <span class="string">'iunits'</span>, iunits, <span class="string">'ounits'</span>, ounits); pf = rational(pl) ---- rational 1 ---- model: my rational num: [1 2 3] den: [4 5 6] iunits: [Hz] ounits: [V] -------------------- </pre></div>