Mercurial > hg > ltpda
view m-toolbox/classes/@ao/mltfe.m @ 21:8be9deffe989 database-connection-manager
Update ltpda_uo.update
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% MLTFE compute log-frequency space TF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: MLTFE compute log-frequency space TF % % CALL: Txy = mltfe(X,f,r,m,L,fs,win,order,olap,Lmin,method,variance) % % VERSION: $Id: mltfe.m,v 1.25 2009/11/27 15:18:45 miquel Exp $ % % HISTORY: 19-05-2007 M Hewitson % Creation % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = mltfe(varargin) import utils.const.* % Get inputs X = varargin{1}; f = varargin{2}; r = varargin{3}; m = varargin{4}; L = varargin{5}; K = varargin{6}; fs = varargin{7}; win = varargin{8}; order = varargin{9}; olap = varargin{10}; Lmin = varargin{11}; method = varargin{12}; % --- Prepare some variables si = size(X); nc = si(1); nf = length(f); Txy = zeros(nf,1); dev = zeros(nf,1); disp_each = round(nf/100)*10; winType = win.type; winPsll = win.psll; % ----- Loop over Frequency for fi=1:nf [Txy(fi) dev(fi)]= computeTF(fs, L(fi), K(fi), m, winType, winPsll, X, olap, order, nc, f(fi), fi, nf, disp_each, method); end % Set output varargout{1} = Txy; varargout{2} = dev; end %-------------------------------------------------------------------------- % Function to run over channels function [Txy,dev]= computeTF(fs, l, K, m, winType, winPsll, X, olap, order, nc, ffi, fi, nf, disp_each, method) switch lower(winType) case 'kaiser' lwin = specwin(winType, l, winPsll); otherwise lwin = specwin(winType, l); end % Compute DFT coefficients twopi = 2.0*pi; p = 1i * twopi * m(fi)/l.*[0:l-1]; C = lwin.win .* exp(p); if mod(fi,disp_each) == 0 || fi == 1 || fi == nf utils.helper.msg(utils.const.msg.PROC1, 'computing frequency %04d of %04d: %f Hz', fi, nf, ffi); end % Loop over input channels [Txy,dev] = in2out(l, X, K, olap, order, nc, method, C, lwin, fs); end %-------------------------------------------------------------------------- % Compute 1 input to multiple outputs function [Txy,dev]= in2out(l, X, K, olap, order, nc, method, C, lwin, fs) % if no errors are required the function returns zero but errors are not % stored in the final ao dev = 0; switch lower(method) case 'tfe' % Core cross-DFT part in C-mex file % We need cross-spectrum and Power spectrum [XY, XX, YY, M2, nsegs] = ltpda_dft(X(1,:), X(2,:), l, C, olap, order); Txy = conj(XY)/(XX); if nsegs == 1 dev = Inf; else dev = sqrt((nsegs/(nsegs-1)^2)*(YY./XX).*(1 - (abs(XY).^2)./(XX.*YY))); % dP = sqrt((k/(k-1)^2)*(Pyy./Pxx).*(1 - (abs(Pxy).^2)./(Pxx.*Pyy))); end case 'cpsd' % Core cross-DFT part in C-mex file [XY, XX, YY, M2, nsegs] = ltpda_dft(X(1,:), X(2,:), l, C, olap, order); S1 = lwin.ws; S2 = lwin.ws2; Txy = 2.0*XY/fs/S2; Var = 4.0*M2/fs^2/S2^2/nsegs; if nsegs == 1 dev = Inf; else dev = sqrt(Var); end case 'mscohere' % Core cross-DFT part in C-mex file % We need cross-spectrum and Power spectrum [XY, XX, YY, M2, nsegs] = ltpda_dft(X(1,:), X(2,:), l, C, olap, order); Txy = (abs(XY).^2)./(XX.*YY); % Magnitude-squared coherence if nsegs == 1 dev = Inf; else dev = sqrt((2*Txy/nsegs).*(1-Txy).^2); end case 'cohere' % Core cross-DFT part in C-mex file % We need cross-spectrum and Power spectrum [XY, XX, YY, M2, nsegs] = ltpda_dft(X(1,:), X(2,:), l, C, olap, order); Txy = XY./sqrt(XX.*YY); % Complex coherence if nsegs == 1 dev = Inf; else dev = sqrt((2*abs(Txy)/nsegs).*(1-abs(Txy)).^2); end end end