Mercurial > hg > ltpda
view m-toolbox/classes/@matrix/linfitsvd.m @ 21:8be9deffe989 database-connection-manager
Update ltpda_uo.update
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% LINFITSVD Linear fit with singular value decomposition %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: Linear least square problem with singular value % decomposition % % ALGORITHM: Perform linear identification of the parameters of a % multichannel systems. The results of different experiments on the same % system can be passed as input. The algorithm, thanks to the singular % value decomposition, extract the maximum amount of information from each % single channel and for each experiment. Total information is then % combined to get the final result. % % CALL: pars = linfitsvd(os1,...,osn,pl); % % INPUT: % - osi are vector of system output signals. They must be % Nx1 matrix objects, where N is the output dimension of the % system % % OUTPUT: % - pars: a pest object containing parameter estimation % % <a href="matlab:utils.helper.displayMethodInfo('matrix', 'linfitsvd')">Parameters Description</a> % % VERSION: $Id: linfitsvd.m,v 1.38 2011/04/08 08:56:32 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = linfitsvd(varargin) %%% LTPDA stufs and get data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.OMNAME, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all ltpdauoh objects [mtxs, mtxs_invars] = utils.helper.collect_objects(varargin(:), 'matrix', in_names); [pl, invars] = utils.helper.collect_objects(varargin(:), 'plist'); inhists = [mtxs(:).hist]; % combine plists pl = parse(pl, getDefaultPlist()); %%% get input parameters % if the model is a matrix of smodels lmod = find(pl, 'dmodel'); % if the model is ssm inNames = find(pl,'InNames'); outNames = find(pl,'OutNames'); % common parameters mod = find(pl,'Model'); fitparams = find(pl,'FitParams'); inputdat = find(pl,'Input'); WF = find(pl,'WhiteningFilter'); nloops = find(pl,'Nloops'); ncut = find(pl,'Ncut'); npad = find(pl,'Npad'); kwnpars = find(pl,'KnownParams'); tol = find(pl,'tol'); fastopt = find(pl,'fast'); setalias = find(pl,'SetAlias'); sThreshold = find(pl,'sThreshold'); diffStep = find(pl,'diffStep'); boundedpars = find(pl,'BoundedParams'); boudary = find(pl,'BoundVals'); % check if there are bounded parameters if ~isempty(boundedpars) boundparams = true; else boundparams = false; end % check the class of the model if isa(mod,'ssm') ssmmod = true; else ssmmod = false; end %%% some sanity checks if ~ssmmod if numel(mtxs)~= numel(inputdat.objs) error('Number of input data vectors must be the same of fit data vectors') end end [fitparams,idx] = sort(fitparams); fitparvals = fitparams; if ssmmod %%% get fit parameters for ii=1:numel(fitparams) fitparvals{ii} = mod.getParameters(plist('names',fitparams{ii})); end if isempty(diffStep) sdiffStep = cell2mat(fitparvals).*0.01; idz = sdiffStep == 0; sdiffStep(idz) = 1e-7; else sdiffStep = diffStep(idx); end else %%% get a single set of parameters totparnames = {}; totparvals = {}; for ii=1:numel(mod.objs) aa = mod.objs(ii).params; cc = mod.objs(ii).values; % get total parameter names [bb,i1,i2]=union(totparnames,aa); totparnames = [totparnames(i1),aa(i2)]; % get total parameter values totparvals = [totparvals(i1),cc(i2)]; end [totparnames,id] = sort(totparnames); totparvals = totparvals(id); %%% get fit parameters [nn,i1,i2] = intersect(totparnames,fitparams); fitparams = totparnames(i1); fitparvals = totparvals(i1); [fitparams,id] = sort(fitparams); fitparvals = fitparvals(id); end if ~ssmmod %%% linearize model with respect to fit parameters if isempty(lmod) lmod = linearize(mod,plist('Params',fitparams,'Sorting',false)); end end if isempty(WF) wfdat = copy(mtxs,1); elseif ~fastopt %%% whitening fit data wfdat = copy(mtxs,1); for ii=1:numel(mtxs) wfdat(ii) = filter(mtxs(ii),WF); end end % decide to pad in any case, assuming the objects have the same length if isempty(npad) npad = length(mtxs(1).objs(1).data.y) - 1; end % set alias if there are if setalias && (~ssmmod && ~isempty(mod.objs(1).aliasNames)) nsecs = mtxs(1).objs(1).data.nsecs; fs = mtxs(1).objs(1).data.fs; plalias = plist('nsecs',nsecs,'npad',npad,'fs',fs); for ii=1:numel(mod.objs) mod.objs(ii).assignalias(mod.objs(ii),plalias); end for jj=1:numel(lmod.objs) for ii=1:numel(lmod.objs{jj}.objs) lmod.objs{jj}.objs(ii).assignalias(lmod.objs{jj}.objs(ii),plalias); end end end % do a copy to add at the output pest outmod = copy(mod,1); % check if the fast option is active if ~ssmmod && fastopt % set length of fft (this should match the operation made in fftfilt_core) nfft = length(mtxs(1).objs(1).data.y) + npad; fs = mtxs(1).objs(1).data.fs; % get fft freqs for current data. type option must match the one used % in fftfilt_core for fft_core fftfreq = utils.math.getfftfreq(nfft,fs,'one'); % calculate freq resp of diagonal elements of WF rWF = getWFresp(WF,fftfreq,fs); % combine symbolic models with rWF mod = joinmodelandfilter(mod,rWF); lmod = joinmodelandfilter(lmod,rWF); WF = []; %%% whitening fit data wfdat = copy(mtxs,1); for ii=1:numel(mtxs) for jj=1:numel(mtxs(ii).objs) wfdat(ii).objs(jj) = fftfilt_core(wfdat(ii).objs(jj),rWF.objs(jj),npad); end end clear rWF end % init storage struct loop_results = struct('a',cell(1),... 'Ca',cell(1),... 'Corra',cell(1),... 'Vu',cell(1),... 'bu',cell(1),... 'Cbu',cell(1),... 'Fbu',cell(1),... 'mse',cell(1),... 'params',cell(1),... 'ppm',cell(1)); % init user interaction variable reply = 'N'; %%% run fit loop % This causes problems on some machines so we remove it for now until we % can investigate further. % fftw('planner', 'exhaustive'); for kk=1:nloops % init index variable xxx = 1; % init data struct exps = struct(); %%% Set fit parameters into model if ssmmod fs = wfdat(1).objs(1).fs; mod.doSetParameters(fitparams,cell2mat(fitparvals)); lmod = parameterDiff(mod,plist('names',fitparams,'values',sdiffStep)); lmod.modifyTimeStep(plist('newtimestep',1/fs)); else % fitparvals are updated at each fit loop if fastopt for ii = 1:numel(mod.objs) mod.objs(ii).objs{2}.setParams(fitparams,fitparvals); end else for ii = 1:numel(mod.objs) mod.objs(ii).setParams(fitparams,fitparvals); end end end %%% run over input data for ii=1:numel(inputdat.objs) if ssmmod %%% extract input if isa(inputdat.objs{ii},'ao') in = inputdat.objs{ii}; elseif isa(inputdat.objs{ii},'matrix') in = inputdat.objs{ii}.objs(:); else error('Unknown Input data type.') end %%% calculates zero order response plsym = plist('AOS VARIABLE NAMES',inNames{ii},... 'RETURN OUTPUTS',outNames{ii},... 'AOS',in); %eo = simulate(lmod,plsym); %zor = matrix(eo,plist('shape',[numel(eo) 1])); zor = simulate(lmod,plsym); % check dimensions if size(zor.objs,1)<size(zor.objs,2) % do transpose zor = transpose(zor); end %%% calculates first order response for jj=1:numel(fitparams) % get output ports names [token, remain] = strtok(outNames{ii},'.'); loutNames = token; for zz=1:numel(token) loutNames{zz} = sprintf('%s_DIFF_%s%s',token{zz},fitparams{jj},remain{zz}); end plsym = plist('AOS VARIABLE NAMES',inNames{ii},... 'RETURN OUTPUTS',loutNames,... 'AOS',in); %eol = simulate(lmod,plsym); %fstor(jj) = matrix(eol,plist('shape',[numel(eol) 1])); fstor(jj) = simulate(lmod,plsym); % check dimensions if size(fstor(jj).objs,1)<size(fstor(jj).objs,2) % do transpose fstor(jj) = transpose(fstor(jj)); end fstor(jj).setName(fitparams{jj}); end else %%% calculates zero order response zor = fftfilt(inputdat.objs{ii},mod,plist('Npad',npad)); %%% calculates first order response for jj=1:numel(lmod.objs) fstor(jj) = fftfilt(inputdat.objs{ii},lmod.objs{jj},plist('Npad',npad)); fstor(jj).setName(lmod.objs{jj}.name); end end if isempty(WF) wzor = zor; wfstor = fstor; else %%% whitening zor wzor = filter(zor,WF); %%% whitening fstor for jj=1:numel(fstor) wfstor(jj) = filter(fstor(jj),WF); wfstor(jj).setName(fstor(jj).name); end end %%% Collect object for the fit procedure for jj=1:numel(wfdat(ii).objs) % get difference between fit data and zero order response tfdat = wfdat(ii).objs(jj) - wzor.objs(jj); % remove whitening filter transient tfdats = tfdat.split(plist('samples',[ncut+1 numel(tfdat.y)])); % insert into exps struct fitdata(xxx,1) = tfdats; % build fit basis for gg=1:numel(fitparams) for hh=1:numel(wfstor) if strcmp(fitparams(gg),wfstor(hh).name) bsel = wfstor(hh).objs(jj); % remove whitening filter transient bsels = bsel.split(plist('samples',[ncut+1 numel(tfdat.y)])); end end bs(gg) = bsels; end % insert basis fitbasis(xxx,:) = bs; % step up xxx xxx = xxx + 1; end %jj=1:numel(wfdat(ii).objs) end %ii=1:numel(inputdat.objs) %%% build input objects [NN,MM] = size(fitbasis); for zz=1:MM H(1,zz) = matrix(fitbasis(:,zz)); end Y = matrix(fitdata); %%% Insert known parameters if ~isempty(kwnpars) kwnparmanes = kwnpars.names; kwnparvals = kwnpars.y; kwnparerrors = kwnpars.dy; % init struct groundexps = struct; for ii=1:numel(kwnparmanes) for jj=1:numel(fitparams) if strcmp(kwnparmanes{ii},fitparams{jj}) groundexps(ii).pos = jj; groundexps(ii).value = kwnparvals(ii); groundexps(ii).err = kwnparerrors(ii); end end end end %%% do fit if ~isempty(kwnpars) && isfield(groundexps,'pos') plfit = plist('KnownParams',groundexps,'sThreshold',sThreshold); [out,a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = linlsqsvd(H,Y,plfit); else plfit = plist('sThreshold',sThreshold); [out,a,Ca,Corra,Vu,bu,Cbu,Fbu,mse,dof,ppm] = linlsqsvd(H,Y,plfit); end %%% update parameters values for ii=1:numel(fitparams) fitparvals{ii} = fitparvals{ii} + a(ii); end %%% check for bouded params if boundparams for pp=1:numel(fitparams) for qq=1:numel(boundedpars) if strcmp(fitparams{pp},boundedpars{qq}); % check boudaries bd = boudary{qq}; if fitparvals{pp}<bd(1) fitparvals{pp} = bd(1); elseif fitparvals{pp}>bd(2) fitparvals{pp} = bd(2); end end end end end %%% store intermediate results loop_results(kk).a = a; loop_results(kk).Ca = Ca; loop_results(kk).Corra = Corra; loop_results(kk).Vu = Vu; loop_results(kk).bu = bu; loop_results(kk).Cbu = Cbu; loop_results(kk).Fbu = Fbu; loop_results(kk).mse = mse; loop_results(kk).params = fitparvals; loop_results(kk).ppm = ppm; utils.helper.msg(msg.IMPORTANT, 'loop %d, mse %d\n',kk,mse); % check fit stability and accuracy fitmsg = checkfit(Vu,a); if ~isempty(fitmsg) && ~strcmpi(reply,'Y') % display message utils.helper.msg(msg.IMPORTANT, fitmsg); % decide if stop for cycle reply = input('Do you want to carry on with fit iteration? Y/N [Y]: ', 's'); if isempty(reply) reply = 'Y'; end if strcmpi(reply,'N') break end end % check convergence condvec = (abs(a).^2)./diag(Ca); % parameters a are going to zero during the fit iterations if all(condvec < tol) condmsg = sprintf(['Fit parameters have reached convergence.\n'... 'Fit loop was terminated at iteration %s.\n'],num2str(kk)); utils.helper.msg(msg.IMPORTANT, condmsg); break end end %for kk=1:nloops %%% output data % get minimum mse if ~isempty(fitmsg) val = mse; idx = kk; else mseprog = zeros(numel(loop_results),1); for ii=1:numel(loop_results) mseprog(ii) = loop_results(ii).mse; end [val,idx] = min(abs(mseprog-1)); % get the nearest to 1 value utils.helper.msg(msg.PROC1, 'Output values at minimum mse, mse = %d\n',val); end % output pest object pe = pest(); pe.setY(cell2mat(loop_results(idx).params)); pe.setDy(sqrt(diag(loop_results(idx).Ca))); pe.setCov(loop_results(idx).Ca); pe.setChi2(loop_results(idx).mse); pe.setNames(fitparams); pe.setDof(dof); pe.setModels(outmod); pe.setName(sprintf('linfitsvd(%s)', mod.name)); pe.setProcinfo(plist('loop_results',loop_results)); % set History pe.addHistory(getInfo('None'), pl, [mtxs_invars(:)], [inhists(:)]); varargout{1} = pe; end %-------------------------------------------------------------------------- % check fit accuracy and stability %-------------------------------------------------------------------------- function msg = checkfit(V,aa) if size(V,1)<numel(aa) % The number of parameters combinations is less than the number of fit % parameters. Information cannot be recostructed fit results will be % compromised VV = abs(V).^2; num = numel(aa)-size(V,1); mVV = max(VV); % try to identify non measured params unmparams = []; for jj = 1:num [vl,idx] = min(mVV); unmparams = [unmparams idx]; mVV(idx) = []; end msg = sprintf(['!!! The number of parameters combinations is less than the number of fit parameters. \n' ... 'Information cannot be recostructed and fit results will be compromised. \n'... 'Try to remove parameters %s from the fit parameters list or add information with more experiments !!!\n'],num2str(unmparams)); else unmparams = []; trh1 = 1e-4; % eigenvectors are normalized, therefore square of the rows of V are sum % to one. Each column of V store the coefficients for a given parameter % for the set of eigenvectors for jj = 1:size(V,2) cl = abs(V(:,jj)).^2; if all(cl<trh1) unmparams = [unmparams jj]; end end if ~isempty(unmparams) msg = sprintf(['!!! Parameter/s %s is/are not well measured. \n'... 'Fit accuracy could be impaired. \n'... 'Try to remove such parameters from the fit parameters list !!!\n'],num2str(unmparams)); else msg = ''; end end end %-------------------------------------------------------------------------- % calculate frequency response of diagonal elements of the whitening filter %-------------------------------------------------------------------------- function rsp = getWFresp(wf,f,fs) % run over wf elements obj = wf.objs; [rw,cl] = size(obj); if rw~=cl error('??? Matrix of whitening filter must be square'); end amdl = ao.initObjectWithSize(rw,1); for jj=1:rw % check filter type switch lower(class(obj(jj,jj))) case 'filterbank' % get filter response on given frequencies amdly = utils.math.mtxiirresp(obj(jj,jj).filters,f,fs,obj(jj,jj).type); amdl(jj,1) = ao(fsdata(f, amdly, fs)); case 'miir' % get filter response on given frequencies amdly = utils.math.mtxiirresp(obj(jj,jj),f,fs,[]); amdl(jj,1) = ao(fsdata(f, amdly, fs)); end end rsp = matrix(amdl,plist('shape',[rw 1])); end %-------------------------------------------------------------------------- % Join Symbolic model and whitening filter for fast calculations %-------------------------------------------------------------------------- function jmod = joinmodelandfilter(smod,fil) switch class(smod) case 'matrix' mobj = smod.objs; [nn,mm] = size(mobj); nmobj = collection.initObjectWithSize(nn,mm); for ii=1:nn for jj=1:mm nmobj(ii,jj) = collection(fil.objs(ii,1),mobj(ii,jj)); nmobj(ii,jj).setName(mobj(ii,jj).name); end end jmod = matrix(nmobj, plist('shape',[nn,mm])); jmod.setName(smod.name); case 'collection' matobj = matrix.initObjectWithSize(1,numel(smod.objs)); for kk=1:numel(smod.objs) mobj = smod.objs{kk}.objs; [nn,mm] = size(mobj); nmobj = collection.initObjectWithSize(nn,mm); for ii=1:nn for jj=1:mm nmobj(ii,jj) = collection(fil.objs(ii,1),mobj(ii,jj)); nmobj(ii,jj).setName(mobj(ii,jj).name); end end matobj(kk) = matrix(nmobj); matobj(kk).setName(smod.objs{kk}.name); %smod.objs{kk} = matobj; end jmod = collection(matobj); end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'matrix', 'ltpda', utils.const.categories.sigproc, '$Id: linfitsvd.m,v 1.38 2011/04/08 08:56:32 hewitson Exp $', sets, pl); ii.setArgsmin(1); ii.setOutmin(1); ii.setOutmax(1); ii.setModifier(false); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() % General plist for moltichannel fits pl = plist.MCH_FIT_PLIST; % p = param({'FitParams','A cell array with the names of the fit parameters'}, {}); % pl.append(p); p = param({'BoundedParams','A cell array with the names of the bounded fit parameters'}, {}); pl.append(p); p = param({'BoundVals','A cell array with the boundaries values for the bounded fit parameters'}, {}); pl.append(p); % p = param({'Model','System parametric model. A matrix of smodel objects or a ssm object'}, paramValue.EMPTY_DOUBLE); % pl.append(p); p = param({'dModel','Partial derivatives of the system parametric model. A matrix of smodel objects'}, paramValue.EMPTY_DOUBLE); pl.append(p); % p = param({'InNames','A cell array containing cell arrays of the input ports names for each experiment. Used only with ssm models.'}, {}); % pl.append(p); % % p = param({'OutNames','A cell array containing cell arrays of the output ports names for each experiment. Used only with ssm models.'}, {}); % pl.append(p); % p = param({'Input','Collection of input signals'},paramValue.EMPTY_DOUBLE); % pl.append(p); p = param({'WhiteningFilter','The multichannel whitening filter. A matrix object of filters'},paramValue.EMPTY_DOUBLE); pl.append(p); p = param({'Nloops', 'Number of desired iteration loops.'}, paramValue.DOUBLE_VALUE(1)); pl.append(p); p = param({'Ncut', 'Number of bins to be discharged in order to cut whitening filter transients'}, paramValue.DOUBLE_VALUE(100)); pl.append(p); % Number of points for zero padding p = param({'Npad', 'Number of points for zero padding.'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = param({'KnownParams', 'Known Parameters. A pest object containing parameters values, names and errors'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = param({'tol','Convergence threshold for fit parameters'}, paramValue.DOUBLE_VALUE(1)); pl.append(p); p = param({'fast',['Using fast option causes the whitening filter to be applied in frequency domain.'... 'The filter matrix is considered diagonal. The method skip time domain filtering saving some process time'... 'It works only when the imput model is a matrix of smodels']}, paramValue.FALSE_TRUE); pl.append(p); p = param({'SetAlias','Set to true in order to aassign internally the values to the model alias'}, paramValue.FALSE_TRUE); pl.append(p); p = param({'sThreshold',['Fix upper treshold for singular values.'... 'Singular values larger than the value will be ignored.'... 'This correspon to consider only parameters combinations with error lower then the value']},... paramValue.DOUBLE_VALUE(1)); pl.append(p); p = plist({'diffStep','Numerical differentiation step for ssm models'}, paramValue.EMPTY_DOUBLE); pl.append(p); end