view m-toolbox/test/LTPDA_training/topic5/TrainigSession_T5_Ex05.m @ 21:8be9deffe989 database-connection-manager

Update ltpda_uo.update
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Mon, 05 Dec 2011 16:20:06 +0100
parents f0afece42f48
children
line wrap: on
line source

% Training session Topic 5 exercise 05
% 
% Fitting time series with xfit
%
% ao/xfit uses a full non-linear least square algorithm to fit data. Here
% the main features will be described to fit an up-chirp sine.
%
%  1) Load time series data
%  2) Define the model to fit
%  3) Inspect data in order to find an initial guess
%  4) Fit data with ao/xfit starting from that guess
%  5) Check results
%  6) Fit again by changing the fitting algorithm (fminunc will be used)
%  7) Check results
%  8) Fit again by using a Monte Carlo search
%  9) Check results
% 10) Final fit with the full model (data bias included)
% 11) Check results
% 12) Comments
% 
% Trento, 01-03-2010
% Giuseppe Congedo
%
% $Id: TrainigSession_T5_Ex05.m,v 1.3 2011/05/13 15:13:12 ingo Exp $
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 1) load tsdata

% load test noise AO from file
data = ao(plist('filename', 'topic5/T5_Ex05_TestNoise.xml'));
data.setName;

% look at data
iplot(data)
% iplot(abs(fft(data)))
% iplot(psd(data))

%% 2) set the model

% try a linearly chirped sine wave with a bias
mdl = smodel('a + P1.*sin(2.*pi.*(P2 + P3.*t).*t + P4)');
mdl.setParams({'a', 'P1', 'P2', 'P3', 'P4'});
mdl.setXvar('t');
mdl.subs('a',5); % set additional parameters - data bias

%% 3) try to find an initial guess

% plot the tentative model
mdlTry = mdl.setValues([4 1e-4 1e-5 0]);
mdlTry.setXvals(data.x);
iplot(data,mdlTry.eval)

%% 4) xfit from an initial guess

% fit plist
plfit = plist('Function', mdl, ...   
  'P0', [4 1e-4 1e-5 0], ... % set initial guess for the parameters
  'LB', [2 1e-6 1e-6 0], ... % set lower bounds for parameters
  'UB', [5 1e-2 1e-2 2*pi] ... % set upper bounds for parameters
  );
  
% do fit
params = xfit(data, plfit)

%% 5) check results

bestMdl = eval(params);

% plotting results
iplot(data,bestMdl)
iplot(data-bestMdl)
iplot(psd(data-bestMdl))

% Comments.
% Fit is not so bad, but let's now try to change the fitting algorithm.

%% 6) xfit from an initial guess (change algorithm)

% fit plist
plfit = plist('Function', mdl, ...   
  'P0', [4 1e-4 1e-5 0], ... % set initial guess for the parameters
  'LB', [2 1e-6 1e-6 0], ... % set lower bounds for parameters
  'UB', [5 1e-2 1e-2 2*pi], ... % set upper bounds for parameters
  'algorithm', 'fminunc'); % set fitting algorithm
  
% do fit
params = xfit(data, plfit)

%% 7) check results

bestMdl = eval(params);

% plotting results
iplot(data,bestMdl)
iplot(data-bestMdl)
iplot(psd(data-bestMdl))

% Comments.
% Fit is not so bad: an improvement with respect to using fminsearch.
% Let's now try to do a Monte Carlo search.

%% 8) xfit from a Monte Carlo search (bounds are shrinked about the best-fit found above)

% fit plist
plfit = plist('Function', mdl, ...   
  'LB', [2.5 1e-5 1e-6 0], ... % set lower bounds for parameters
  'UB', [3.5 1e-3 1e-4 2*pi], ... % set upper bounds for parameters
  'algorithm', 'fminunc', ... % set fitting algorithm
  'MonteCarlo', 'y', 'Npoints', 1e4); % set the number of points in the parameter space
  
% do fit
params = xfit(data, plfit)

%% 9) check results

bestMdl = eval(params);

% plotting results
iplot(data,bestMdl)
iplot(data-bestMdl)
iplot(psd(data-bestMdl))

% Comments.
% Fit is not so bad: no further improvements with respect to the previous fit.
% Let's now try to fit the full model by doing a Monte Carlo search.

%% 10) xfit with full model

% set the full model (including the data bias)
mdl = smodel('a + P1.*sin(2.*pi.*(P2 + P3.*t).*t + P4)');
mdl.setParams({'a', 'P1', 'P2', 'P3', 'P4'});
mdl.setXvar('t');

% fit plist
plfit = plist('Function', mdl, ...
  'P0', [5 3.01 7.27e-5 1.00e-5 0.325], ... % set initial guess for the parameters
  'LB', [4 2.5 1e-5 1e-6 0], ... % set lower bounds for parameters
  'UB', [6 3.5 1e-3 1e-4 2*pi], ... % set upper bounds for parameters
  'algorithm', 'fminunc' ... % set fitting algorithm
  );
  
% do fit
params = xfit(data, plfit)

%% 11) check results

bestMdl = eval(params);

% plotting results
iplot(data,bestMdl)
iplot(data-bestMdl)
iplot(psd(data-bestMdl))

% Comments.
% Fit is good, even for the full model (including bias).

%% 12) Comments

% Let's compare the fit results with the real parameters.
%
% Firstly, data were generated with the set of parameters:
% a  = 5
% P1 = 3
% P2 = 1e-4
% P3 = 1e-5
% P4 = 0.3
%        
% In the end, the fit results are
% chi2 = 1.03
% dof  = 995
% a   =  4.965      +/-  0.033
% P1  =  3.018      +/-  0.047
% P2  =  6.6e-5     +/-  3.1e-5
% P3  =  1.0032e-5  +/-  3.1e-8
% P4  =  0.334      +/-  0.043
% Quite in well accordance with expected values!
% 
% Are they biased? No, they are not. Indeed:
% (p_fit - p_true)/dp = ...
%                       1.1
%                       0.39
%                       1.1
%                       1.1
%                       0.80
% Very good.