Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/diffStepFish_1x1.m @ 11:9174aadb93a5 database-connection-manager
Add LTPDA Repository utility functions into utils.repository
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Look for differentiation step for a given parameter and % % Parameters are: % % $Id: diffStepFish_1x1.m,v 1.1 2011/10/07 08:17:52 miquel Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function best = diffStepFish_1x1(i1,S11,N,meval,params,numparams,ngrid,ranges,freqs,inNames,outNames) import utils.const.* % remove aux file if existing if exist('diffStepFish.txt') == 2 ! rm diffStepFish.txt end step = ones(ngrid,numel(params)); % initialize matrix of steps for ii = 1:numel(params) step(:,ii) = ranges(1)*numparams(ii); end % step(:,1) = logspace(ranges(1,1),ranges(2,1),ngrid); for kk = 1:length(params) step(:,kk) = numparams(kk)*logspace(log10(ranges(1)),log10(ranges(2)),ngrid); Rmat = []; for jj = 1:ngrid for ii = 1:length(params) % differentiate numerically dH = meval.parameterDiff(plist('names', params(ii),'values',step(jj,ii))); % create plist with correct outNames (since parameterDiff change them) out1 = strrep(outNames{1},'.', sprintf('_DIFF_%s.',params{ii})); % 2x2 case spl = plist('set', 'for bode', ... 'outputs', {out1}, ... 'inputs', inNames, ... 'reorganize', true,... 'f', freqs); % do bode d = bode(dH, spl); % assign according matlab's matrix notation: % H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) d11(ii) = d.objs(1); end fs = S11.fs; % scaling of PSD % PSD = 2/(N*fs) * FFT *conj(FFT) C11 = N*fs/2.*S11.y; % compute elements of inverse cross-spectrum matrix InvS11 = 1./C11; % compute Fisher Matrix for i =1:length(params) for j =1:length(params) v1v1 = conj(d11(i).y.*i1.y).*(d11(j).y.*i1.y); FisMat(i,j) = sum(real(InvS11.*v1v1)); end end detFisMat = det(FisMat); R = [step(jj,:) detFisMat]; % only file diffStepFish.txt stores all iterations. Rmat is % initialized for each loop save('diffStepFish.txt','R','-ascii','-append'); Rmat = [Rmat; R]; end % look for the stable step: compute diff and % look for the smallest one in absolute value % The smallest slope marks the plateau diffDetFisMat = abs(diff(Rmat(:,end))); lowdet = diffDetFisMat(1); ind = 2; for k = 1:numel(diffDetFisMat) if diffDetFisMat(k) < lowdet lowdet = diffDetFisMat(k); ind = k+1; % index give by diff = x(2) - x(1). We take the step corresponding to x(2) end end % display message utils.helper.msg(msg.IMPORTANT, ... sprintf('Best numerical diff. step with respect %s: %d',params{kk}, step(ind,kk)), mfilename('class'), mfilename); % reassing all current column to the best step step(:,kk) = step(ind,kk)*ones(ngrid,1); figure diffDetFisMat(diffDetFisMat == 0) = 1e-20; % to avoid zeros in loglog plot loglog(Rmat(1:end-1,kk)/numparams(kk),diffDetFisMat,'--ks','LineWidth',2,'MarkerSize',10) title(sprintf('Parameter: %s',params{kk})) ylabel('\Delta FisMat / \Delta\theta') xlabel('Normalised \Delta\theta') end best = step(1,:); end