Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/getinitstate.m @ 16:91f21a0aab35 database-connection-manager
Update utils.jquery
* * *
Update utils.jmysql.getsinfo
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% GETINITSTATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: % % Initialize filters for noise generation % % % CALL: % % INPUT: % % - res % - poles % - S0 % % OUTPUT: % % Zi % % REFERENCES: % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HISTORY: 23-04-2009 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % VERSION: $Id: ndeigcsd.m,v 1.2 2009/06/10 16:15:32 luigi Exp $ % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Zi = getinitstate(res,poles,S0,varargin) % default value for the method used mtd = 'svd'; if ~isempty(varargin) for j=1:length(varargin) if strcmpi(varargin{j},'mtd') mtd = lower(varargin{j+1}); end end end % get problem dimesionality, it is assumed that res for a given filter are % input as columns and that each different filter has the same number of % residues and poles [rw,cl] = size(res); N = numel(res(:,1)); % check size if cl == 1 % one dimensional A = res(:); p = poles(:); % Marking complex and real poles % cindex = 1; pole is complex, next conjugate pole is marked with cindex % = 2. cindex = 0; pole is real cindex=zeros(numel(p),1); for mm=1:numel(p) if imag(p(mm))~=0 if mm==1 cindex(mm)=1; else if cindex(mm-1)==0 || cindex(mm-1)==2 cindex(mm)=1; cindex(mm+1)=2; else cindex(mm)=2; end end end end NA = numel(A); % Build covariance matrix for filter states H = zeros(NA); for aa = 1:NA for bb = 1:NA H(aa,bb) = (p(aa)*conj(p(bb))*A(aa)*conj(A(bb))*S0)/(1-p(aa)*conj(p(bb))); end end % avoiding problems caused by roundoff errors HH = triu(H,0); % get upper triangular part of H HH1 = triu(H,1); % get upper triangular part of H above principal diagonal HH2 = HH1'; % do transpose conjugate H = HH + HH2; % reconstruct H in order to be really hermitian % switch between methods switch mtd case 'svd' % get decomposition of Hr [U,S,V] = svd(H,0); % output initial states for gaussian data series ZZ = V*(sqrt(diag(S)).*randn(N,1)); % cleaning up results for numerical approximations idx = imag(poles(:,1))==0; ZZ(idx) = real(ZZ(idx)); % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate for jj = 1:numel(ZZ) if cindex(jj)==1 ZZ(jj+1) = conj(ZZ(jj)); end end case 'mvnorm' ZZ = mvnrnd(zeros(N,1),H,1); % willing to work with columns if size(ZZ,2)>1 ZZ = ZZ.'; end if imag(ZZ(1))~=0 && imag(p(1))==0 % flip ZZ = flipud(ZZ); end % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate for jj = 1:numel(ZZ) if cindex(jj)==1 ZZ(jj+1) = conj(ZZ(jj)); end end end else % cl dmensional % join residues and poles A = []; p = []; pdim = []; for ii=1:cl % Join poles and residues as a single column A = [A; res(:,ii)]; p = [p; poles(:,ii)]; pdim = [pdim; numel(poles(:,ii))]; end % Marking complex and real poles % cindex = 1; pole is complex, next conjugate pole is marked with cindex % = 2. cindex = 0; pole is real cindex=zeros(numel(p),1); for mm=1:numel(p) if imag(p(mm))~=0 if mm==1 cindex(mm)=1; else if cindex(mm-1)==0 || cindex(mm-1)==2 cindex(mm)=1; cindex(mm+1)=2; else cindex(mm)=2; end end end end % sanity check, search if poles are equals eqpoles = false; if ~all(logical(diff(pdim))) % is executed if the elements of pdim are equal % compare poles series for ii=2:cl if all((poles(:,ii)-poles(:,ii-1))<eps) eqpoles = true; end end end if ~eqpoles % poles are different NA = numel(A); % Build covariance matrix for filter states H = zeros(NA); for aa = 1:NA for bb = 1:NA H(aa,bb) = (p(aa)*conj(p(bb))*A(aa)*conj(A(bb))*S0)/(1-p(aa)*conj(p(bb))); end end % avoiding problems caused by roundoff errors HH = triu(H,0); % get upper triangular part of H HH1 = triu(H,1); % get upper triangular part of H above principal diagonal HH2 = HH1'; % do transpose conjugate H = HH + HH2; % reconstruct H in order to be really hermitian % get full rank H [U,S,V] = svd(H,0); % reducing size Ur = U(1:N,1:N); Sr = S(1:N,1:N); Vr = V(1:N,1:N); % New full rank covariance Hr = Vr*Sr*Vr'; % avoiding problems caused by roundoff errors HH = triu(Hr,0); % get upper triangular part of H HH1 = triu(Hr,1); % get upper triangular part of H above principal diagonal HH2 = HH1'; % do transpose conjugate Hr = HH + HH2; % reconstruct H in order to be really hermitian % switch between methods switch mtd case 'svd' % get decomposition of Hr [UU,SS,VV] = svd(Hr,0); % output initial states for gaussian data series ZZ = VV*(sqrt(diag(SS)).*randn(N,1)); % cleaning up results for numerical roundoff errors idx = imag(p)==0; ZZ(idx) = real(ZZ(idx)); % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate for jj = 1:numel(ZZ) if cindex(jj)==1 ZZ(jj+1) = conj(ZZ(jj)); end end case 'mvnorm' ZZ = mvnrnd(zeros(N,1),Hr,1); % willing to work with columns if size(ZZ,2)>1 ZZ = ZZ.'; end if imag(ZZ(1))~=0 && imag(p(1))==0 % flip ZZ = flipud(ZZ); end % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate for jj = 1:numel(ZZ) if cindex(jj)==1 ZZ(jj+1) = conj(ZZ(jj)); end end end else % poles are in common NA = numel(A); % Build block diagonal covariance matrix for filter states H = zeros(NA); for ii = 1:numel(pdim) for aa = 1+(ii-1)*pdim(ii):(ii-1)*pdim(ii)+pdim(ii) for bb = 1+(ii-1)*pdim(ii):(ii-1)*pdim(ii)+pdim(ii) H(aa,bb) = (p(aa)*conj(p(bb))*A(aa)*conj(A(bb))*S0)/(1-p(aa)*conj(p(bb))); end end end % avoiding problems caused by roundoff errors HH = triu(H,0); % get upper triangular part of H HH1 = triu(H,1); % get upper triangular part of H above principal diagonal HH2 = HH1'; % do transpose conjugate H = HH + HH2; % reconstruct H in order to be really hermitian % switch between methods switch mtd case 'svd' % get decomposition of Hr [UU,SS,VV] = svd(H,0); % output initial states for gaussian data series rd = randn(N,1); rdv = []; for jj = 1:numel(pdim); rdv = [rdv; rd]; end ZZ = VV*(sqrt(diag(SS)).*rdv); % cleaning up results for numerical roundoff errors idx = imag(p)==0; ZZ(idx) = real(ZZ(idx)); % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate for jj = 1:numel(ZZ) if cindex(jj)==1 ZZ(jj+1) = conj(ZZ(jj)); end end case 'mvnorm' ZZ = mvnrnd(zeros(N,1),H,1); % willing to work with columns if size(ZZ,2)>1 ZZ = ZZ.'; end if imag(ZZ(1))~=0 && imag(p(1))==0 % flip ZZ = flipud(ZZ); end % cleaning up results for numerical roundoff errors % states associated to complex conjugate poles must be complex % conjugate for jj = 1:numel(ZZ) if cindex(jj)==1 ZZ(jj+1) = conj(ZZ(jj)); end end end end end Zi = ZZ; end