view m-toolbox/classes/@smodel/hessian.m @ 16:91f21a0aab35
database-connection-manager
Update utils.jquery
* * *
Update utils.jmysql.getsinfo
author
Daniele Nicolodi <nicolodi@science.unitn.it>
date
Mon, 05 Dec 2011 16:20:06 +0100 (2011-12-05)
parents
f0afece42f48
children
line source
+ − % hessian compute the hessian matrix for a symbolic model.
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % DESCRIPTION: hessian compute the hessian matrix for a symbolic model.
+ − %
+ − % CALL: H = hessian(obj);
+ − %
+ − % INPUTS: obj - a smodel
+ − %
+ − % <a href="matlab:web(smodel.getInfo('hessian').tohtml, '-helpbrowser')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: hessian.m,v 1.6 2011/04/08 08:56:30 hewitson Exp $
+ − %
+ − % HISTORY: 28-10-2010 G. Congedo
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − function varargout = hessian(varargin)
+ −
+ − %%% Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − import utils.const.*
+ − utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all AOs and plists
+ − [mdl, mdl_invars] = utils.helper.collect_objects(varargin(:), 'smodel', in_names);
+ − pl = utils.helper.collect_objects(varargin(:), 'plist', in_names);
+ −
+ −
+ − if nargout == 0
+ − error('### hessian cannot be used as a modifier. Please give an output variable.');
+ − end
+ −
+ − if ~all(isa(mdl, 'smodel'))
+ − error('### hessian must be only applied to smodel objects.');
+ − end
+ −
+ − % Extract necessary parameters
+ − p = pl.find('params');
+ −
+ − if isempty(p) || strcmp(p,'all')
+ − p = mdl.params;
+ − end
+ − Np = numel(p);
+ − % grad = zeros(Np,1);
+ − % H = zeros(Np);
+ −
+ − % compute symbolic 1st-order differentiation
+ − for ll=1:Np
+ − grad(ll,1) = diff(mdl,p{ll});
+ − end
+ −
+ − % compute symbolic 2nd-order differentiation
+ − for mm=1:Np
+ − for ll=1:mm
+ − H(ll,mm) = diff(grad(ll),p{mm});
+ − end
+ − end
+ −
+ − % symmetrize matrix
+ − for ll=1:Np
+ − for mm=1:ll
+ − H(ll,mm) = H(mm,ll);
+ − end
+ − end
+ −
+ − % set name
+ − for ll=1:Np
+ − for m=1:Np
+ − H(ll,mm).name = sprintf('hessian(%s)', mdl.name);
+ − end
+ − end
+ −
+ − H.addHistory(getInfo('None'), pl, mdl_invars(:), [mdl(:).hist]);
+ −
+ − % Set outputs
+ − if nargout > 0
+ − varargout{1} = H;
+ − end
+ −
+ − end
+ −
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − else
+ − sets = {'Default'};
+ − pl = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'smodel', 'ltpda', utils.const.categories.helper, '$Id: hessian.m,v 1.6 2011/04/08 08:56:30 hewitson Exp $', sets, pl);
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function plout = getDefaultPlist()
+ − persistent pl;
+ − if exist('pl', 'var')==0 || isempty(pl)
+ − pl = buildplist();
+ − end
+ − plout = pl;
+ − end
+ −
+ − function pl = buildplist()
+ −
+ − pl = plist();
+ −
+ − % params to diff
+ − p = param({'params', 'A cell-array of parameters to differentiate with respect to.'}, 'all');
+ − pl.append(p);
+ −
+ − end
+ −