Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/KSpValue.m @ 18:947e2ff4b1b9 database-connection-manager
Update plist.FROM_REPOSITORY_PLIST and plist.TO_REPOSITORY_PLIST
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% KSpValue Compute p-Value of the Kolmogorov - Smirnov distribution %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Compute p-Value of the Kolmogorov - Smirnov distribution % % CALL % % pValue = utils.math.KSpValue(KSstatistic,n1,n2); % % % INPUT % % - KSstatistic, value of the statistic of the KS distribution. % Corresponding at KSstatistic = max(abs(CD1-CD2)) % - length of the first data series % - length of the second data series % % References: % Marsaglia, G., W.W. Tsang, and J. Wang (2003), "Evaluating Kolmogorov`s % Distribution", Journal of Statistical Software, vol. 8, issue 18. % % % L Ferraioli 06-12-2010 % % $Id: KSpValue.m,v 1.3 2011/07/14 07:10:16 mauro Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pValue = KSpValue(KSstatistic, n1, n2) if isempty(n2) n = n1; % test against theoretical distribution else n = n1*n2/(n1+n2); % test of two empirical distributions end s = n*KSstatistic^2; % Following the recipe described in described in Marsaglia, et al. % For d values that are in the far tail of the distribution (i.e. % p-values > .999), the following lines will speed up the computation % significantly, and provide accuracy up to 7 digits. if s == 0 pValue = 0; else if (s > 7.24) || ((s > 3.76) && (n > 99)) pValue = 2*exp(-(2.000071+.331/sqrt(n)+1.409/n)*s); else % Express d as d = (k-h)/n, where k is a +ve integer and 0 < h < 1. k = ceil(KSstatistic*n); h = k - KSstatistic*n; m = 2*k-1; % Create the H matrix, which describes the CDF, as described in Marsaglia, % et al. if m > 1 c = 1./gamma((1:m)' + 1); r = zeros(1,m); r(1) = 1; r(2) = 1; T = toeplitz(c,r); T(:,1) = T(:,1) - (h.^[1:m]')./gamma((1:m)' + 1); T(m,:) = fliplr(T(:,1)'); T(m,1) = (1 - 2*h^m + max(0,2*h-1)^m)/gamma(m+1); else T = (1 - 2*h^m + max(0,2*h-1)^m)/gamma(m+1); end % Scaling before raising the matrix to a power if ~isscalar(T) lmax = max(eig(T)); T = (T./lmax)^n; else lmax = 1; end % Pr(Dn < d) = n!/n * tkk , where tkk is the kth element of Tn = T^n. % p-value = Pr(Dn > d) = 1-Pr(Dn < d) pValue = (1 - exp(gammaln(n+1) + n*log(lmax) - n*log(n)) * T(k,k)); end end pValue = abs(pValue); end