Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/fisher_1x1.m @ 18:947e2ff4b1b9 database-connection-manager
Update plist.FROM_REPOSITORY_PLIST and plist.TO_REPOSITORY_PLIST
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Compute Fisher matrix % % Parameters are: % i1 - input 1st channel (ao) % n - noise both channels (matrix 1x1) % mdl - model (matrix or ssm) % params - parameters % numparams - numerical value of parameters % freqs - frequnecies being evaluated % N - number of fft frequencies % pl - plist % % M Nofrarias 20-09-11 % % $Id: fisher_1x1.m,v 1.1 2011/10/07 08:17:52 miquel Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function FisMat = fisher_1x1(i1,n,mdl,params,numparams,freqs,N,pl,inNames,outNames) import utils.const.* % Compute psd n1 = psd(n.getObjectAtIndex(1,1), pl); % interpolate to given frequencies % noise S11 = interp(n1,plist('vertices',freqs)); % get some parameters used below fs = S11.fs; if ~isempty(mdl) && all(strcmp(class(mdl),'matrix')) % compute built-in matrix for i = 1:numel(mdl.objs) % set Xvals h(i) = mdl.getObjectAtIndex(i).setXvals(freqs); % set alias h(i).assignalias(mdl.objs(i),plist('xvals',freqs)); % set paramaters h(i).setParams(params,numparams); end % differentiate and eval for i = 1:length(params) utils.helper.msg(msg.IMPORTANT, sprintf('computing symbolic differentiation with respect %s',params{i}), mfilename('class'), mfilename); % differentiate symbolically dH11 = diff(h(1),params{i}); % evaluate d11(i) = eval(dH11); end elseif ~isempty(mdl) && all(strcmp(class(mdl),'ssm')) meval = copy(mdl,1); % set parameter values % meval.doSetParameters(params, numparams); meval.setParameters(params, numparams); % get the differentiation step step = find(pl,'step'); % case no diff. step introduced if isempty(step) utils.helper.msg(msg.IMPORTANT, ... sprintf('computing optimal differentiation steps'), mfilename('class'), mfilename); ranges = find(pl,'stepRanges'); if isempty(ranges) error('### Please input upper and lower ranges for the parameters: ''ranges''') end ngrid = find(pl,'ngrid'); if isempty(ngrid) error('### Please input a number of points for the grid to compute the diff. step : ''ngrid''') end % look for numerical differentiation step step = utils.math.diffStepFish_1x1(i1,S11,N,meval,params,numparams,ngrid,ranges,freqs,inNames,outNames); end % differentiate and eval for i = 1:length(params) utils.helper.msg(msg.IMPORTANT, ... sprintf('computing numerical differentiation with respect %s, Step:%4.2d ',params{i},step(i)), mfilename('class'), mfilename); % differentiate numerically dH = meval.parameterDiff(plist('names', params(i),'values',step(i))); % create plist with correct outNames (since parameterDiff change them) out1 = strrep(outNames{1},'.', sprintf('_DIFF_%s.',params{i})); % 2x2 case spl = plist('set', 'for bode', ... 'outputs', out1, ... 'inputs', inNames, ... 'reorganize', true,... 'f', freqs); % do bode d = bode(dH, spl); % assign according matlab's matrix notation: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) d11(i) = d.objs(1); end else error('### please introduce models for the transfer functions') end % scaling of PSD % PSD = 2/(N*fs) * FFT *conj(FFT) C11 = N*fs/2.*S11.y; % compute elements of inverse cross-spectrum matrix InvS11 = 1./C11; % compute Fisher Matrix for i =1:length(params) for j =1:length(params) v1v1 = conj(d11(i).y.*i1.y).*(d11(j).y.*i1.y); FisMat(i,j) = sum(real(InvS11.*v1v1)); end end end