Mercurial > hg > ltpda
view m-toolbox/classes/@ao/fromPzmodel.m @ 18:947e2ff4b1b9 database-connection-manager
Update plist.FROM_REPOSITORY_PLIST and plist.TO_REPOSITORY_PLIST
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% FROMPZMODEL Construct a time-series ao from polynomial coefficients %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FUNCTION: fromPzmodel % % DESCRIPTION: Construct a time-series ao from polynomial coefficients % % CALL: a = fromPzmodel(a, pl) % % PARAMETER: pl: plist containing 'pzmodel', 'Nsecs', 'fs' % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = fromPzmodel(a, pli) VERSION = '$Id: fromPzmodel.m,v 1.24 2011/08/15 06:09:42 hewitson Exp $'; % get AO info ii = ao.getInfo('ao', 'From Pzmodel'); % Set the method version string in the minfo object ii.setMversion([VERSION '-->' ii.mversion]); % Add default values pl = applyDefaults(ii.plists, pli); pl.getSetRandState(); pzm = find(pl, 'pzmodel'); nsecs = find(pl, 'Nsecs'); fs = find(pl, 'fs'); ndigits = find(pl, 'ndigits'); % Build t vector if isempty(nsecs) || nsecs == 0 error('### Please provide ''Nsecs'' for pzmodel constructor.'); end if isempty(fs) || fs == 0 error('### Please provide ''fs'' for pzmodel constructor.'); end % Check if input pzmodel has more zeros than poles np = 0; for i =1:length(pzm.poles) if isnan(pzm.poles(i).q) % simple pole np = np + 1; elseif pzm.poles(i).q == 0.5 % critical damping np = np + 1; else % double pole np = np + 2; end end nz = 0; for i =1:length(pzm.zeros) if isnan(pzm.zeros(i).q) nz = nz + 1; elseif pzm.zeros(i).q == 0.5 nz = nz + 1; else nz = nz + 2; end end if np <= nz error('### The noise generator needs more poles than zeros.'); end % t = linspace(0, nsecs - 1/fs, nsecs*fs); % Run noise generator % conversion disp(' - Filter coefficients are calculated from input pzmodel.'); [num, den] = ao.ngconv(pzm); % create matrices toolboxinfo = ver('symbolic'); if isempty(toolboxinfo) disp('the time series is calculated without the symbolic math toolbox') disp(' - Matrices are calculated from evaluated denominator coefficients.'); [Tinit, Tprop, E] = ao.ngsetup(den, fs); else disp('the time series is calculated using the symbolic math toolbox') disp(' - Matrices are calculated from evaluated denominator coefficients.'); if isempty(ndigits) ndigits = 32; warning('### set number of digits to 32!') end [Tinit, Tprop, E] = ao.ngsetup_vpa(den, fs, ndigits); end % set state vector disp(' - Since there is no given state vector it will be calculated.'); % make initial state vector y = ao.nginit(Tinit); % propagate to make noise vector [x, yo] = ao.ngprop(Tprop, E, num, y, fs*nsecs); % build variables into data object t = x*pzm.gain; data = tsdata(t,fs); a.data = data; if isempty(pl.find('name')) pl.pset('name', sprintf('noisegen(%s)', pzm.name)); end if isempty(pl.find('description')) pl.pset('description', pzm.description); end % Add history a.addHistory(ii, pl, [], pzm.hist); % Set xunits a.setXunits(pl.find('xunits')); % Set yunits a.setYunits(pl.find('yunits')); % Set T0 a.setT0(pl.find('t0')); % Set toffset a.setToffset(pl.find('toffset')); % Set object properties from the plist a.setObjectProperties(pl); end