Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/pfallpsymz.m @ 3:960fe1aa1c10 database-connection-manager
Add LTPDADatabaseConnectionManager implementation. Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% PFALLPSYMZ all pass filtering in order to stabilize TF poles and zeros. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DESCRIPTION: % % All pass filtering in order to stabilize transfer functions poles. % It inputs a partial fraction expanded discrete model and outpu % residues, poles direct terms and frequency response of the stabilized % model. Function can handle multiple models with common poles. % % CALL: % % [nr,np,nd,resp] = pfallpsymz(r,p,d,f,fs) % % INPUTS: % % r: are residues. (Npx1) or (NpxM) vector % p: are poles. (Npx1) vector % d: is direct term (1x1) or (1xM) vector % mresp: input model response. (Nx1) or (NxM) vector % f: is the frequancies vector in (Hz). (Nx1) vector % fs: is the sampling frequency in (Hz). (1x1) % % OUTPUTS: % % nr: new residues. (Npx1) or (NpxM) vector % np: new stable poles. (Npx1) vector % nd: new direct term. (1x1) or (1xM) vector % nmresp: new model response. (Nx1) or (NxM) vector % % NOTE: % % This function make use of symbolic math toolbox functions % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % VERSION: $Id: pfallpsymz.m,v 1.5 2008/11/10 15:40:11 luigi Exp $ % % HISTORY: 12-09-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [nr,np,nd,nmresp] = pfallpsymz(r,p,d,mresp,f,fs) % Reshaping [a,b] = size(r); if a<b r = r.'; % reshape as a column vector end [a,b] = size(p); if a<b p = p.'; % reshape as a column vector end [a,b] = size(f); if a<b f = f.'; % reshape as a column vector end [a,b] = size(f); if a<b f = f.'; % reshape as a column vector end [a,b] = size(d); if a > b d = d.'; % reshape as a row d = d(1,:); % taking the first row (the function can handle only simple constant direct terms) end if isempty(fs) fs = 1; end [a,b] = size(fs); if a ~= b disp(' Fs has to be a number. Only first term will be considered! ') fs = fs(1); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f = sym(f,'f'); fs = sym(fs,'f'); syms z p = sym(p,'f'); % stabilize poles sp = p; unst = abs(double(sp)) > 1; sp(unst) = 1./conj(sp(unst)); skp = prod(1./conj(p(unst))); [Na,Nb] = size(r); for nn = 1:Nb % pp = p(unst); % psp = sp(unst); % tterm = 1; % for ii = 1:length(pp) % tterm = tterm.*(z-pp(ii))./(z-psp(ii)); % end % % s = cos((2*pi/fs).*f) + 1i.*sin((2*pi/fs).*f); % allresp = subs(tterm,z,s); % phs = angle(allresp); % nmresp(:,nn) = mresp(:,nn).*(cos(phs)+1i.*sin(phs)); % np = double(sp); % digits(100) % Defining inputs as symbolic variable rt = sym(r(:,nn),'f'); % p = sym(p,'f'); dt = sym(d(1,nn),'f'); % f = sym(f,'f'); % fs = sym(fs,'f'); % syms z % Function gain coefficient k = sum(rt)+dt; Np = length(p); % Defining the symbolic transfer function vter = rt.*z./(z-p); vter = [vter; dt]; Mter = diag(vter); H = trace(Mter); % Factorizing the transfer function HH = factor(H); % Extracting numerator and denominator [N,D] = numden(HH); % Symbolci calculation of function zeros cN = coeffs(expand(N),z); n = length(cN); cN2 = -1.*cN(2:end)./cN(1); A = sym(diag(ones(1,n-2),-1)); A(1,:) = cN2; zrs = eig(A); if double(d) == 0 zrs = [zrs; sym(0,'f')]; end % % stabilize zeros % szrs = zrs; % unst = abs(double(szrs)) > 1; % szrs(unst) = 1./conj(szrs(unst)); % skz = prod(conj(zrs(unst))); % % stabilize poles % sp = p; % unst = abs(double(sp)) > 1; % sp(unst) = 1./conj(sp(unst)); % skp = prod(1./conj(p(unst))); % Correcting for some special cases % if isempty(skz) % skz = sym(1,'f'); % end if isempty(skp) skp = sym(1,'f'); end if isempty(k) k = sym(1,'f'); end % Calculating new gain % sk = real(k*skz*skp); sk = real(k*skp); HHHn = sym(1,'f'); for jj = 1:Np HHHn = HHHn.*(z-zrs(jj)); tsp = sp; tsp(jj) = []; tHHHd = sym(1,'f'); for kk = 1:Np-1 tHHHd = tHHHd.*(z-tsp(kk)); end HHHd(jj,1) = tHHHd; end for jj = 1:Np sr(jj,1) = subs(sk*HHHn/(z*HHHd(jj,1)),z,sp(jj)); end np = double(sp); for kk = 1:Np if imag(np(kk)) == 0 sr(kk) = real(sr(kk)); end end nr(:,nn) = double(sr); nd(:,nn) = double(dt); % Model evaluation pfparams.type = 'disc'; pfparams.freq = f; pfparams.fs = fs; pfparams.res = nr(:,nn); pfparams.pol = np; pfparams.dterm = nd(:,nn); pfr = utils.math.pfresp(pfparams); resp = pfr.resp; ratio = mean(abs(mresp(:,nn))./abs(resp)); resp = resp.*ratio; nr(:,nn) = nr(:,nn).*ratio; nd(:,nn) = nd(:,nn).*ratio; nmresp(:,nn) = resp; end