Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/vcfit.m @ 3:960fe1aa1c10 database-connection-manager
Add LTPDADatabaseConnectionManager implementation. Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% VCFIT Fits continuous models to frequency responses %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DESCRIPTION: % % Fits a continuous model to a frequency response using relaxed % s-domain vector fitting algorithm [1, 2]. The function is able to fit more % than one frequency response per time. In case that more than one % frequency response is passed as input, they are fitted with a set of % common poles. Model functions are expanded in partial fractions: % % r1 rN % f(s) = ------- + ... + ------- + d % s - p1 s - pN % % CALL: % % [res,poles,dterm,mresp,rdl] = vcfit(y,f,poles,weight,fitin) % % INPUTS: % % - y: Is a vector wuth the frequency response data. % - f: Is the frequency vector in Hz. % - poles: are a set of starting poles. % - weight: are a set of weights used in the fitting procedure. % - fitin: is a struct containing fitting options and parameters. fitin % fields are: % - fitin.stable = 0; fit without forcing poles to be stable. % - fitin.stable = 1; force poles to be stable flipping unstable % poles in the left side of the complex plane. s -> s - 2*conj(s). % - fitin.dterm = 0; fit with d = 0. % - fitin.dterm = 1; fit with d different from 0. % - fitin.polt = 0; fit without plotting results. % - fitin.plot = 1; plot fit results in loglog scale. % - fitin.plot = 2; plot fit results in semilogx scale. % - fitin.plot = 3; plot fit results in semilogy scale. % - fitin.plot = 4; plot fit results in linear xy scale. % - fitin.ploth = #; a plot handle to define the figure target for % plotting. Default: [1] % % OUTPUT: % % - res: vector or residues. % - poles: vector of poles. % - dterm: direct term d. % - mresp: frequency response of the fitted model % - rdl: residuals y - mresp % - mse: normalized mean squared error % % EXAMPLES: % % - Fit on a single transfer function: % % INPUT % y is a (Nx1) or (1xN) vector % f is a (Nx1) or (1xN) vector % poles is a (Npx1) or (1xNp) vector % weight is a (Nx1) or (1xN) vector % % OUTPUT % res is a (Npx1) vector % poles is a (Npx1) vector % dterm is a constant % mresp is a (Nx1) vector % rdl is a (Nx1) vector % mse is a constant % % - Fit Nt transfer function at the same time: % % INPUT % y is a (NxNt) or (NtxN) vector % f is a (Nx1) or (1xN) vector % poles is a (Npx1) or (1xNp) vector % weight is a (NxNt) or (NtxN) vector % % OUTPUT % res is a (NpxNt) vector % poles is a (Npx1) vector % dterm is a (1xNt) vector % mresp is a (NxNt) vector % rdl is a (NxNt) vector % mse is a (1xNt) vector % % REFERENCES: % % [1] B. Gustavsen and A. Semlyen, "Rational approximation of frequency % domain responses by Vector Fitting", IEEE Trans. Power Delivery % vol. 14, no. 3, pp. 1052-1061, July 1999. % [2] B. Gustavsen, "Improving the Pole Relocating Properties of Vector % Fitting", IEEE Trans. Power Delivery vol. 21, no. 3, pp. % 1587-1592, July 2006. % % NOTE: % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HISTORY: 12-09-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % VERSION: '$Id: vcfit.m,v 1.11 2010/02/08 19:05:59 luigi Exp $'; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [res,poles,dterm,mresp,rdl,mse] = vcfit(y,f,poles,weight,fitin) warning off all %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Collecting inputs % Default input struct defaultparams = struct('stable',0, 'dterm',0, 'plot',0, 'ploth', 1); names = {'stable','dterm','plot','ploth'}; % collecting input and default params if ~isempty(fitin) for jj=1:length(names) if isfield(fitin, names(jj)) && ~isempty(fitin.(names{1,jj})) defaultparams.(names{1,jj}) = fitin.(names{1,jj}); end end end stab = defaultparams.stable; % Enforce pole stability is is 1 dt = defaultparams.dterm; % 1 to fit with direct term plotting = defaultparams.plot; % set to 1 if plotting is required plth = defaultparams.ploth; % set the figure target %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Inputs in row vectors [a,b] = size(y); if a > b % shifting to row y = y.'; end [a,b] = size(f); if a > b % shifting to row f = f.'; end [a,b] = size(poles); if a > b % shifting to row poles = poles.'; end clear w w = weight; [a,b] = size(w); if a > b % shifting to row w = w.'; end N = length(poles); % Model order if dt dl = 1; % Fit with direct term else dl = 0; % Fit without direct term end % definition of s s = 1i.*2.*pi.*f; Nz = length(s); [Nc,Ny] = size(y); if Ny ~= Nz error(' Number of data points different from number of frequency points! ') end %Tolerances used by relaxed version of vector fitting TOLlow=1e-8; TOLhigh=1e8; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Marking complex and real poles % cindex = 1; pole is complex, next conjugate pole is marked with cindex % = 2. cindex = 0; pole is real cindex=zeros(1,N); for m=1:N if imag(poles(m))~=0 if m==1 cindex(m)=1; else if cindex(m-1)==0 || cindex(m-1)==2 cindex(m)=1; cindex(m+1)=2; else cindex(m)=2; end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Augmented problem %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Matrix initialinzation BA = zeros(Nc*Nz+1,1); Ak=zeros(Nz,N+1); AA=zeros(Nz*Nc+1,(N+dl)*Nc+N+1); nf = zeros(1,Nc*(N+dl)+N+1); % Normalization factor % Defining Ak for jj = 1:N if cindex(jj) == 1 % conjugate complex couple of poles Ak(:,jj) = 1./(s-poles(jj)) + 1./(s-conj(poles(jj))); Ak(:,jj+1) = 1i./(s-poles(jj)) - 1i./(s-conj(poles(jj))); elseif cindex(jj) == 0 % real pole Ak(:,jj) = 1./(s-poles(jj)); end end Ak(1:Nz,N+1) = 1; % Scaling factor sc = 0; for mm = 1:Nc sc = sc + (norm(w(mm,:).*y(mm,:)))^2; end sc=sqrt(sc)/Nz; for nn = 1:Nc wg = w(nn,:).'; % Weights ida=(nn-1)*Nz+1; idb=nn*Nz; idc=(nn-1)*(N+dl)+1; for mm =1:N+dl % Diagonal blocks AA(ida:idb,idc-1+mm) = wg.*Ak(1:Nz,mm); end for mm =1:N+1 % Last right blocks AA(ida:idb,Nc*(N+dl)+mm) = -wg.*(Ak(1:Nz,mm).*y(nn,1:Nz).'); end end % setting the last row of AA and BA for the relaxion condition for qq = 1:N+1 AA(Nc*Nz+1,Nc*(N+dl)+qq) = real(sc*sum(Ak(:,qq))); end AA = [real(AA);imag(AA)]; % Last element of the solution vector BA(Nc*Nz+1) = Nz*sc; xBA = real(BA); xxBA = imag(BA); Nrow = Nz*Nc+1; BA = zeros(2*Nrow,1); BA(1:Nrow,1) = xBA; BA(Nrow+1:2*Nrow,1) = xxBA; % Normalization factor % nf = zeros(2*N+dl+1,1); for pp = 1:length(AA(1,:)) nf(pp) = norm(AA(:,pp),2); % Euclidean norm AA(:,pp) = AA(:,pp)./nf(pp); % Normalization end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Solving augmented problem % XA = pinv(AA)*BA; % XA = inv((AA.')*AA)*(AA.')*BA; % XA = AA.'*AA\AA.'*BA; XA = AA\BA; XA = XA./nf.'; % renormalization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Checking the tolerance if abs(XA(end))<TOLlow || abs(XA(end))>TOLhigh if XA(end)==0 Dnew=1; elseif abs(XA(end))<TOLlow Dnew=sign(XA(end))*TOLlow; elseif abs(XA(end))>TOLhigh Dnew=sign(XA(end))*TOLhigh; end for pp = 1:length(AA(1,:)) AA(:,pp) = AA(:,pp).*nf(pp); %removing previous scaling end ind=length(AA(:,1))/2; %index to additional row related to relaxation AA(ind,:)=[]; % removing relaxation term BA=-Dnew*AA(:,end); %new right side AA(:,end)=[]; nf(end)=[]; for pp = 1:length(AA(1,:)) nf(pp) = norm(AA(:,pp),2); % Euclidean norm AA(:,pp) = AA(:,pp)./nf(pp); % Normalization end % XA=(AA.'*AA)\(AA.'*BA); % using normal equation XA=AA\BA; XA = XA./nf.'; % renormalization XA=[XA;Dnew]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Finding zeros of sigma lsr = XA((N+dl)*Nc+1:(N+dl)*Nc+N,1); % collect the least square results D = XA(end); % direct term of sigma CPOLES = diag(poles); B = ones(N,1); C = lsr.'; for kk = 1:N if cindex(kk) == 1 CPOLES(kk,kk)=real(poles(kk)); CPOLES(kk,kk+1)=imag(poles(kk)); CPOLES(kk+1,kk)=-1*imag(poles(kk)); CPOLES(kk+1,kk+1)=real(poles(kk)); B(kk,1) = 2; B(kk+1,1) = 0; end end H = CPOLES-B*C/D; szeros=eig(H); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Ruling out unstable poles % This option force the poles of f to stay inside the left side of the % complex plane if stab unst = real(szeros)>0; szeros(unst) = szeros(unst)-2*real(szeros(unst)); % Mirroring respect to the complex axes end szeros = sort(szeros); N = length(szeros); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Separating complex poles from real poles and ordering rnpoles = []; inpoles = []; for tt = 1:N if imag(szeros(tt)) == 0 % collecting real poles rnpoles = [rnpoles; szeros(tt)]; else % collecting complex poles inpoles = [inpoles; szeros(tt)]; end end % Sorting complex poles in order to have them in the expected order a+jb % and a-jb a>0 b>0 inpoles = sort(inpoles); npoles = [rnpoles;inpoles]; npoles = npoles - 2.*1i.*imag(npoles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Marking complex and real poles cindex=zeros(N,1); for m=1:N if imag(npoles(m))~=0 if m==1 cindex(m)=1; else if cindex(m-1)==0 || cindex(m-1)==2 cindex(m)=1; cindex(m+1)=2; else cindex(m)=2; end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Direct problem %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Matrix initialinzation nB(1:Nz,1:Nc) = real(w.*y).'; nB(Nz+1:2*Nz,1:Nc) = imag(w.*y).'; B = zeros(2*Nz,1); nAD = zeros(Nz,N+dl); AD = zeros(2*Nz,N+dl); Ak = zeros(Nz,N+dl); % Defining Ak for jj = 1:N if cindex(jj) == 1 % conjugate complex couple of poles Ak(:,jj) = 1./(s-npoles(jj)) + 1./(s-npoles(jj+1)); Ak(:,jj+1) = 1i./(s-npoles(jj)) - 1i./(s-npoles(jj+1)); elseif cindex(jj) == 0 % real pole Ak(:,jj) = 1./(s-npoles(jj)); end end if dt Ak(1:Nz,N+dl) = ones(Nz,1); % considering the direct term end XX = zeros(Nc,N+dl); for nn = 1:Nc % Defining AD for m=1:N+dl nAD(1:Nz,m) = w(nn,:).'.*Ak(1:Nz,m); end B(1:2*Nz,1) = nB(1:2*Nz,nn); AD(1:Nz,:) = real(nAD); AD(Nz+1:2*Nz,:) = imag(nAD); % Normalization factor nf = zeros(N+dl,1); for pp = 1:N+dl nf(pp,1) = norm(AD(:,pp),2); % Euclidean norm AD(:,pp) = AD(:,pp)./nf(pp,1); % Normalization end % Solving direct problem % XD = inv((AD.')*AD)*(AD.')*B; % XD = AD.'*AD\AD.'*B; % XD = pinv(AD)*B; XD = AD\B; XD = XD./nf; % Renormalization XX(nn,1:N) = XD(1:N).'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Final residues and poles of f lsr = XX(:,1:N); res = zeros(N,Nc); % Real poles have real residues, complex poles have comples residues for nn = 1:Nc for tt = 1:N if cindex(tt) == 1 % conjugate complex couple of poles res(tt,nn) = lsr(nn,tt)+1i*lsr(nn,tt+1); res(tt+1,nn) = lsr(nn,tt)-1i*lsr(nn,tt+1); elseif cindex(tt) == 0 % real pole res(tt,nn) = lsr(nn,tt); end end end poles = npoles; if dt dterm = XX(:,N+dl).'; else dterm = zeros(1,Nc); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Calculating responses and residuals mresp = zeros(Nz,Nc); rdl = zeros(Nz,Nc); mse = zeros(1,Nc); for nn = 1:Nc % freq resp of the fit model r = res(:,nn); p = poles; d = dterm(:,nn); Nf = length(f); N = length(p); rsp = zeros(Nf,1); indx = (0:length(d)-1).'; for ii = 1:Nf for jj = 1:N rsptemp = r(jj)/(1i*2*pi*f(ii)-p(jj)); rsp(ii) = rsp(ii) + rsptemp; end % Direct terms response rsp(ii) = rsp(ii) + sum((((1i*2*pi*f(ii))*ones(length(d),1)).^indx).*d); end % Model response mresp(:,nn) = rsp; % Residual rdl(:,nn) = y(nn,:).' - rsp; % RMS error % mse(:,nn) = sqrt(sum((abs(rdl(:,nn)./(y(nn,:).')).^2))/(Nf-N)); % Chi Square or mean squared error % Note that this error is normalized to the input data in order to % comparable between different sets of data mse(:,nn) = sum((rdl(:,nn)./y(nn,:).').*conj((rdl(:,nn)./y(nn,:).')))/(Nf-N); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Plotting response switch plotting case 0 % No plot case 1 % LogLog plot for absolute value figure(plth) subplot(2,1,1); p1 = loglog(f,abs(y.'),'k'); hold on p2 = loglog(f,abs(mresp),'r'); p3 = loglog(f,abs(rdl),'b'); xlabel('Frequency [Hz]') ylabel('Amplitude') legend([p1(1) p2(1) p3(1)],'Original', 'VCFIT','Residual') hold off subplot(2,1,2); p4 = semilogx(f,(180/pi).*unwrap(angle(y.')),'k'); hold on p5 = semilogx(f,(180/pi).*unwrap(angle(mresp)),'r'); xlabel('Frequency [Hz]') ylabel('Phase [Deg]') legend([p4(1) p5(1)],'Original', 'VCFIT') hold off case 2 % Semilogx plot for absolute value figure(plth) subplot(2,1,1); p1 = semilogx(f,abs(y.'),'k'); hold on p2 = semilogx(f,abs(mresp),'r'); p3 = semilogx(f,abs(rdl),'b'); xlabel('Frequency [Hz]') ylabel('Amplitude') legend([p1(1) p2(1) p3(1)],'Original', 'VCFIT','Residual') hold off subplot(2,1,2); p4 = semilogx(f,(180/pi).*unwrap(angle(y.')),'k'); hold on p5 = semilogx(f,(180/pi).*unwrap(angle(mresp)),'r'); xlabel('Frequency [Hz]') ylabel('Phase [Deg]') legend([p4(1) p5(1)],'Original', 'VCFIT') hold off case 3 % Semilogy plot for absolute value figure(plth) subplot(2,1,1); p1 = semilogy(f,abs(y.'),'k'); hold on p2 = semilogy(f,abs(mresp),'r'); p3 = semilogy(f,abs(rdl),'b'); xlabel('Frequency [Hz]') ylabel('Amplitude') legend([p1(1) p2(1) p3(1)],'Original', 'VCFIT','Residual') hold off subplot(2,1,2); p4 = semilogy(f,(180/pi).*unwrap(angle(y.')),'k'); hold on p5 = semilogy(f,(180/pi).*unwrap(angle(mresp)),'r'); xlabel('Frequency [Hz]') ylabel('Phase [Deg]') legend([p4(1) p5(1)],'Original', 'VCFIT') hold off case 4 % Linear plot for absolute value figure(plth) subplot(2,1,1); p1 = plot(f,abs(y.'),'k'); hold on p2 = plot(f,abs(mresp),'r'); p3 = plot(f,abs(rdl),'b'); xlabel('Frequency [Hz]') ylabel('Amplitude') legend([p1(1) p2(1) p3(1)],'Original', 'VCFIT','Residual') hold off subplot(2,1,2); p4 = plot(f,(180/pi).*unwrap(angle(y.')),'k'); hold on p5 = plot(f,(180/pi).*unwrap(angle(mresp)),'r'); xlabel('Frequency [Hz]') ylabel('Phase [Deg]') legend([p4(1) p5(1)],'Original', 'VCFIT') hold off end