view m-toolbox/html_help/help/ug/ng1D_content.html @ 3:960fe1aa1c10
database-connection-manager
Add LTPDADatabaseConnectionManager implementation. Java code
author
Daniele Nicolodi <nicolodi@science.unitn.it>
date
Mon, 05 Dec 2011 16:20:06 +0100 (2011-12-05)
parents
f0afece42f48
children
line source
+ −
+ − <p>
+ − <ul>
+ − <li><a href="#description">Description</a></li>
+ − <li><a href="#call">Call</a></li>
+ − <li><a href="#inputs">Inputs</a></li>
+ − <li><a href="#outputs">Outputs</a></li>
+ − <li><a href="#algorithm">Algorithm</a></li>
+ − <li><a href="#parameters">Parameters</a></li>
+ − <li><a href="#example">Example</a></li>
+ − </ul>
+ − </p>
+ −
+ − <h2><a name="description">Description</a></h2>
+ −
+ − <p>
+ − noisegen1D is a coloring tool allowing the generation of colored noise from withe noise with a given spectrum.
+ − The function constructs a coloring filter through a fitting procedure to the model provided.
+ − If no model is provided an error is prompted. The colored noise provided has one-sided psd
+ − corresponding to the input model.
+ − </p>
+ −
+ − <h2><a name="call">Call</a></h2>
+ − <div class="fragment">
+ − <pre>
+ − b = noisegen1D(a, pl);
+ − [b1,b2,...,bn] = noisegen1D(a1,a2,...,an, pl);
+ − </pre>
+ − </div>
+ −
+ − <h2><a name="inputs">Inputs</a></h2>
+ −
+ − <p>
+ − <ul>
+ − <li> a - is a tsdata analysis object or a vector of tsdata analysis objects
+ − <li> pl - is a plist with the input parameters. See the list of function parameters below
+ − </ul>
+ − </p>
+ −
+ − <h2><a name="outputs">Outputs</a></h2>
+ −
+ − <p>
+ − <ul>
+ − <li> b - Colored time-series AOs. The coloring filters used
+ − are stored in the objects procinfo field under the
+ − parameter 'Filt'.
+ − </ul>
+ − </p>
+ −
+ − <h2><a name="algorithm">Algorithm</a></h2>
+ −
+ − <p>
+ − <ol>
+ − <li> Fit a set of partial fraction z-domain filters using utils.math.psd2tf.
+ − <li> Convert to array of MIIR filters.
+ − <li> Filter time-series in parallel.
+ − </ol>
+ − </p>
+ −
+ − <h2><a name="parameters">Parameters</a></h2>
+ − <p>
+ − <ul>
+ − <li> 'Model' - a frequency-series AO describing the model psd.
+ − <li> 'MaxIter' - Maximum number of iterations in fit routine
+ − [default: 30]
+ − <li> 'PoleType' - Choose the pole type for fitting:
+ − <ul>
+ − <li> 1 - use real starting poles.
+ − <li> 2 - generates complex conjugate poles of the
+ − type a.*exp(theta*pi*j)
+ − with theta = linspace(0,pi,N/2+1).
+ − <li> 3 - generates complex conjugate poles of the type
+ − a.*exp(theta*pi*j)
+ − with theta = linspace(0,pi,N/2+2) [default].
+ − </ul>
+ − </li>
+ − <li> 'MinOrder' - Minimum order to fit with. [default: 2].
+ − <li> 'MaxOrder' - Maximum order to fit with. [default: 25]
+ − <li> 'Weights' - choose weighting for the fit: [default: 2]
+ − <ul>
+ − <li> 1 - equal weights for each point.
+ − <li> 2 - weight with 1/abs(model).
+ − <li> 3 - weight with 1/abs(model).^2.
+ − <li> 4 - weight with inverse of the square mean spread of the model.
+ − </ul>
+ − </li>
+ − <li> 'Plot' - plot results of each fitting step. [default: false]
+ − <li> 'Disp' - Display the progress of the fitting iteration.
+ − [default: false]
+ − <li> 'FitTolerance' - Log Residuals difference - Check if the minimum
+ − of the logarithmic difference between data and
+ − residuals is larger than a specified value.
+ − ie. if the conditioning value is 2, the
+ − function ensures that the difference between
+ − data and residuals is at lest 2 order of
+ − magnitude lower than data itsleves. [Default: 2].
+ − <li> 'RMSEVar' - Root Mean Squared Error Variation - Check if the
+ − variation of the RMS error is smaller than 10^(-b),
+ − where b is the value given to the variable. This
+ − option is useful for finding the minimum of Chi
+ − squared. [default: 7].
+ − </ul>
+ − </p>
+ −
+ − <h2><a name="example">Example</a></h2>
+ −
+ − <div class="fragment">
+ − <pre>
+ − %% Noise generation from fsdata model object %%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − % Description:
+ − % 1) Generate a fsdata object to be used as psd model
+ − % 2) Generate a random series of data (white)
+ − % 3) Generate colored noise with noisegen1D
+ − % 4) calculated psd of generated data
+ − % 5) check result by plotting
+ −
+ − % 1)
+ − fs = 10; % sampling frequency
+ − pl_mod1 = plist('fsfcn', '0.01./(0.01+f)', 'f1', 1e-6, 'f2', 5, 'nf', 100);
+ − mod1 = ao(pl_mod1); % fsdata model object
+ −
+ − % 2)
+ − % generating white noise
+ − a1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', 1000));
+ −
+ − % 3) Noise generation
+ −
+ − pl1 = plist(...
+ − 'model', mod1, ...
+ − 'MaxIter', 30, ...
+ − 'PoleType', 2, ...
+ − 'MinOrder', 10, ...
+ − 'MaxOrder', 20, ...
+ − 'Weights', 2, ...
+ − 'Plot', false,...
+ − 'Disp', false,...
+ − 'RMSEVar', 5,...
+ − 'FitTolerance', 2);
+ −
+ − ac1 = noisegen1D(a1, pl1);
+ −
+ − % 4)
+ − acxx1 = ac1.psd;
+ − % 5)
+ − iplot(acxx1, mod1);
+ − </pre>
+ − </div>
+ −
+ − <p>
+ − <div align="center">
+ − <IMG src="images/ng1D_1.png" width="800" height="600" align="center" border="0">
+ − </div>
+ − </p>
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −
+ −