Mercurial > hg > ltpda
view m-toolbox/test/test_ao_ltp_ifo2acc.m @ 3:960fe1aa1c10 database-connection-manager
Add LTPDADatabaseConnectionManager implementation. Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% MDC1 Conversion to acceleration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Test script for the MDC1 conversion to acceleration of IFO data % % $Id: test_ao_ltp_ifo2acc.m,v 1.6 2009/12/10 15:35:38 luigi Exp $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Clear clear all %% Loading data currPath = cd; cd 'C:\Users\Luigi\Dati\mock_data\interferometer\'; j=1; fs = 10; disp(sprintf('*** Reading data %d', j)); in = load(sprintf('mockdata_16_48_17_11_2007_%d.dat', j)); d1 = in(:,2); d12 = in(:,3); % Build O1 eval('ts = tsdata(d1, fs);'); eval(sprintf('o1_%d = ao(ts);', j)); eval(sprintf('o1_%d = setName(o1_%d, ''o1'');', j, j)); eval(sprintf('o1_%d = setXunits(o1_%d, ''s'');', j, j)); eval(sprintf('o1_%d = setYunits(o1_%d, ''m'');', j, j)); % Build O12 eval('ts = tsdata(d12, fs);'); eval(sprintf('o12_%d = ao(ts);', j)); eval(sprintf('o12_%d = setName(o12_%d, ''o12'');', j, j)); eval(sprintf('o12_%d = setXunits(o12_%d, ''s'');', j, j)); eval(sprintf('o12_%d = setYunits(o12_%d, ''m'');', j, j)); cd(currPath) eval(sprintf('ch1 = o1_%d;',j)); eval(sprintf('ch2 = o12_%d;',j)); %% Save % save(ch1, 'C:\Dati\mock_data\interferometer\mdc1_ch1.mat') % save(ch2, 'C:\Dati\mock_data\interferometer\mdc1_ch12.mat') %% Check data spectra ch1xx = ch1.psd; ch2xx = ch2.psd; iplot(ch1xx,ch2xx) %% Convert to acceleration % default settings [a1,ad] = ltp_ifo2acc(ch1,ch2); %% check spectra a1xx = a1.psd; adxx = ad.psd; iplot(a1xx,adxx) %% ************************************************************************ %% Set useful params % corresponding to default values fs = ch1.fs; % Hz - sampling frequency TAU_th = 0.1; % s - time constant of thrusters actuation DELTAT_Th = 0.315; % s - delay introduced to command the force to thrusters system TAU_el = 0.01; % s - time constant of electrostatic actuation DELTAT_el = 0.305; % s - delay introduced to command the force to electrostatic actuators w1 = 0.00114i; % TM1 stiffness w2 = 0.00141i; % TM2 stiffness S11 = 1; % Calibration of IFO CH1 S1D = 0; % Cross-talk diff channel to channel 1 SD1 = -1e-4; % Cross-talk channel 1 to diff channel SDD = 1; % Calibration of IFO diff channel m1 = 1.96; % TM1 mass m2 = 1.96; % TM2 mass msc = 422.7; % SC mass Gamma = 4.92e-9; % Gravitational gradient %% Do step-by-step Checks % get mdc1 ifo noise psd models currPath = cd; cd 'C:\Users\Luigi\ltp_data_analysis\MDCs\MDC1_UTN\'; So = matrix([cd '\CSD_mod.mat']); cd(currPath) % frequency range for TFs calculation f = So.objs(1,1).x; % set units for So for ii=1:numel(So.objs) So.objs(ii).setYunits('m^2 Hz^-1'); end %% Get intermediate steps % get just Free Dynamics [a1fd,adfd] = ltp_ifo2acc(ch1,ch2,plist('Hdf',0,'Hsus',0,'Adf',0,'Asus',0)); % get actuated force per unit of mass [a1c,adc] = ltp_ifo2acc(ch1,ch2,plist('FreeDyn_1',0,'FreeDyn_Delta',0)); %% IFO TFs *** % Getting models IFO11 = smodel('S11'); IFO11.setParams({'S11'},{S11}); IFO11.setXvar('f'); IFO11.setXvals(f); IFO11.setXunits('Hz'); IFO11.setName; IFO1D = smodel('S1D'); IFO1D.setParams({'S1D'},{S1D}); IFO1D.setXvar('f'); IFO1D.setXvals(f); IFO1D.setXunits('Hz'); IFO1D.setName; IFOD1 = smodel('SD1'); IFOD1.setParams({'SD1'},{SD1}); IFOD1.setXvar('f'); IFOD1.setXvals(f); IFOD1.setXunits('Hz'); IFOD1.setName; IFODD = smodel('SDD'); IFODD.setParams({'SDD'},{SDD}); IFODD.setXvar('f'); IFODD.setXvals(f); IFODD.setXunits('Hz'); IFODD.setName; % Build the matrix IFO = matrix([IFO11 IFO1D;IFOD1 IFODD]); %% Free Dynamics TFs *** % Getting models FD11 = smodel('(2.*pi.*1i.*f).^2 + (1+m1/msc)*(w1^2) + (m2/msc)*(w2^2)'); FD11.setParams({'m1','m2','msc','w1','w2'},{m1,m2,msc,w1,w2}); FD11.setXvar('f'); FD11.setXvals(f); FD11.setYunits('s^-2'); FD11.setXunits('Hz'); FD11.setName; FD12 = smodel('(m2/msc)*(w2^2) + Gamma'); FD12.setParams({'m2','msc','w2','Gamma'},{m2,msc,w2,Gamma}); FD12.setXvar('f'); FD12.setXvals(f); FD12.setYunits('s^-2'); FD12.setXunits('Hz'); FD12.setName; FD21 = smodel('(w2^2) - (w1^2)'); FD21.setParams({'w1','w2'},{w1,w2}); FD21.setXvar('f'); FD21.setXvals(f); FD21.setYunits('s^-2'); FD21.setXunits('Hz'); FD21.setName; FD22 = smodel('(2.*pi.*1i.*f).^2 + (w2^2) - 2*Gamma'); FD22.setParams({'w2','Gamma'},{w2,Gamma}); FD22.setXvar('f'); FD22.setXvals(f); FD22.setYunits('s^-2'); FD22.setXunits('Hz'); FD22.setName; % Build the matrix FD = matrix([FD11 FD12;FD21 FD22]); % Transfer function from IFO output --> total acceleration FDO = FD*inv(IFO); FDO11 = eval(FDO.objs(1,1)); FDO12 = eval(FDO.objs(1,2)); FDO21 = eval(FDO.objs(2,1)); FDO22 = eval(FDO.objs(2,2)); FDOe = matrix([FDO11 FDO12;FDO21 FDO22]); % expected PSD for total acceleration Sfd = FDOe*So*conj(transpose(FDOe)); % eval results Sfd11 = (2/fs).*abs(Sfd.objs(1,1)); Sfd12 = (2/fs).*Sfd.objs(1,2); Sfd22 = (2/fs).*abs(Sfd.objs(2,2)); % get PSD from data plpsd = plist('nfft',1e5); Pfd11 = psd(a1fd,plpsd); Pfd22 = psd(adfd,plpsd); % plcsd = plist('nfft',5e3); % Pfd12 = csd(a1fd,adfd,plcsd); %% plot plpl1 = plist('Legends', {'S_{a1a1} data','S_{a1a1}','S_{aDaD} data','S_{aDaD}'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); iplot(sqrt(Pfd11),sqrt(Sfd11),sqrt(Pfd22),sqrt(Sfd22),plpl1) % iplot(Pfd11,Sfd11,Pfd22,Sfd22,plpl1) % plpl2 = plist('Legends', {'S_{a1aD} data','S_{a1aD}'},... % 'LineStyles', {'', '--'},'LineWidths',{'All',3}); % iplot(Pfd12,Sfd12,plpl2) %% Controllers TFs *** % Get expected transfer functions Cdf = miir(plist('built-in','DFACS_x_Hdf')); Cdfr = resp(Cdf,plist('f',f,'bank','parallel')); Csus = miir(plist('built-in','DFACS_M3_x_Hsus')); Csusr = resp(Csus,plist('f',f,'bank','parallel')); % Control matrix H = matrix([Cdfr ao(0);ao(0) Csusr]); %% Actuation TFs *** % Get expected transfer functions % ThActr = ao(plist('fsfcn', '10.*(1./(1 + (2.*pi.*1i.*f)*0.1)).*(1./(2.*pi.*1i.*f)).*(exp(-(2.*pi.*1i.*f).*0.315)-exp(-(2.*pi.*1i.*f).*(0.315+0.1)))', 'f', f)); % ElActr = ao(plist('fsfcn', '10.*(1./(1 + (2.*pi.*1i.*f)*0.01)).*(1./(2.*pi.*1i.*f)).*(exp(-(2.*pi.*1i.*f).*0.305)-exp(-(2.*pi.*1i.*f).*(0.305+0.1)))', 'f', f)); % Get expected transfer functions pl = plist('built-in','mdc1_Adf'); Adf = miir(pl); Adfr = resp(Adf,plist('f',f)); pl = plist('built-in','mdc1_Asus'); Asus = miir(pl); Asusr = resp(Asus,plist('f',f)); % Actuation matrix A = matrix([Adfr ao(0);ao(0) Asusr]); %% Get expected spectra and measured C = matrix([ao(1) ao(-m2/msc);ao(0) ao(-1)]); Hnorm = matrix([ao(1/msc) ao(0);ao(0) ao(1/m2)]); tfc = C*A*Hnorm*H; for ii =1:numel(tfc.objs) tfc.objs(ii).setYunits(tfc.objs(ii).yunits/unit('kg')); tfc.objs(ii).simplifyYunits; end Sc = tfc*So*conj(transpose(tfc)); % get PSD from data plpsd = plist('nfft',1e5); Pc11 = psd(a1c,plpsd); Pc22 = psd(adc,plpsd); % plcsd = plist('nfft',5e3); % Pc12 = csd(a1c,adc,plcsd); % plot plpl1 = plist('Legends', {'S_{a1a1} data','S_{a1a1}','S_{aDaD} data','S_{aDaD}'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); % iplot(Pc11,(2/fs).*abs(Sc.objs(1,1)),Pc22,(2/fs).*abs(Sc.objs(2,2)),plpl1) iplot(sqrt(Pc11),sqrt((2/fs).*abs(Sc.objs(1,1))),sqrt(Pc22),sqrt((2/fs).*abs(Sc.objs(2,2))),plpl1) % plpl2 = plist('Legends', {'S_{a1aD} data','S_{a1aD}'},... % 'LineStyles', {'', '--'},'LineWidths',{'All',3}); % iplot(Pc12,Sc.objs(1,2),plpl2) %% Full model of acceleration noise TF = FDOe + tfc; Stot = TF*So*conj(transpose(TF)); % plot plpl = plist('Legends', {'Ch1 data','Ch1','Ch12 data','Ch12'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); iplot(sqrt(a1xx),sqrt((2/fs).*abs(Stot.objs(1,1))),sqrt(adxx),sqrt((2/fs).*abs(Stot.objs(2,2))),plpl) % iplot(a1xx,(2/fs).*abs(Stot.objs(1,1)),adxx,(2/fs).*abs(Stot.objs(2,2)),plpl) %% Test with zero input nsecs = ch1.nsecs; ch1_0 = ao(plist('tsfcn', 'zeros(size(t))', 'fs', 10, 'nsecs', nsecs, 'yunits','m')); ch2_0 = ao(plist('tsfcn', 'zeros(size(t))', 'fs', 10, 'nsecs', nsecs, 'yunits','m')); %% %%% %%% %%% [a1_0,ad_0] = ltp_ifo2acc(ch1_0,ch2_0); % output must be zero plpsd = plist('nfft',1e5); a1_0xx = psd(a1_0,plpsd); ad_0xx = psd(ad_0,plpsd); % plot plpl = plist('Legends', {'Ch1 data','Ch12 data'},... 'LineStyles', {'', ''},'LineWidths',{'All',3}); iplot(sqrt(a1_0xx),sqrt(ad_0xx),plpl) %% %%% %%% %%% [a1_1,ad_1] = ltp_ifo2acc(ch1,ch2_0); TF = FDOe + tfc; So1 = copy(So,1); for ii = 2:numel(So1.objs) So1.objs(ii).setY(zeros(size(So1.objs(ii).x))); end Stot1 = TF*So1*conj(transpose(TF)); plpsd = plist('nfft',1e5); a1_1xx = psd(a1_1,plpsd); ad_1xx = psd(ad_1,plpsd); % plot plpl = plist('Legends', {'Ch1 data','Ch1','Ch12 data','Ch12'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); iplot(sqrt(a1_1xx),sqrt((2/fs).*abs(Stot1.objs(1,1))),sqrt(ad_1xx),sqrt((2/fs).*abs(Stot1.objs(2,2))),plpl) %% %%% %%% %%% [a1_2,ad_2] = ltp_ifo2acc(ch1_0,ch2); TF = FDOe + tfc; So2 = copy(So,1); for ii = 1:numel(So2.objs)-1 So2.objs(ii).setY(zeros(size(So2.objs(ii).x))); end Stot2 = TF*So2*conj(transpose(TF)); plpsd = plist('nfft',1e5); a1_2xx = psd(a1_2,plpsd); ad_2xx = psd(ad_2,plpsd); % plot plpl = plist('Legends', {'Ch1 data','Ch1','Ch12 data','Ch12'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); iplot(sqrt(a1_2xx),sqrt((2/fs).*abs(Stot2.objs(1,1))),sqrt(ad_2xx),sqrt((2/fs).*abs(Stot2.objs(2,2))),plpl)