line source
+ − % PFALLPZ all pass filtering to stabilize TF poles and zeros.
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − % DESCRIPTION:
+ − %
+ − % All pass filtering in order to stabilize transfer function poles and
+ − % zeros. It inputs a partial fraction expanded discrete model and
+ − % outputs a pole-zero minimum phase system
+ − %
+ − % CALL:
+ − %
+ − % [resp,np] = pfallpz(ir,ip,id,mresp,f,fs)
+ − % [resp,np] = pfallpz(ir,ip,id,mresp,f,fs,minphase)
+ − % [resp,np,nz] = pfallpz(ir,ip,id,mresp,f,fs,minphase)
+ − %
+ − % INPUTS:
+ − %
+ − % ir: are residues
+ − % ip: are poles
+ − % id: is direct term
+ − % f: is the frequancies vector in (Hz)
+ − % fs: is the sampling frequency in (Hz)
+ − % minphase: is a flag assuming true (output a minimum phase system) or
+ − % false (output a stable non minimum phase system) values. Default,
+ − % false
+ − %
+ − % OUTPUTS:
+ − %
+ − % resp: is the functions phase frequency response
+ − % np: are the new stable poles
+ − %
+ − % NOTE:
+ − %
+ − % This function make use of signal analysis toolbox functions
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − % VERSION: $Id: pfallpz.m,v 1.6 2009/06/10 15:47:00 luigi Exp $
+ − %
+ − % HISTORY: 12-09-2008 L Ferraioli
+ − % Creation
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − function varargout = pfallpz(ir,ip,id,mresp,f,fs,varargin)
+ −
+ − % Reshaping
+ − [a,b] = size(ir);
+ − if a<b
+ − ir = ir.'; % reshape as a column vector
+ − end
+ −
+ − [a,b] = size(ip);
+ − if a<b
+ − ip = ip.'; % reshape as a column vector
+ − end
+ −
+ − [a,b] = size(f);
+ − if a<b
+ − f = f.'; % reshape as a column vector
+ − end
+ −
+ − [a,b] = size(id);
+ − if a > b
+ − id = id.'; % reshape as a row
+ − id = id(1,:); % taking the first row (the function can handle only simple constant direct terms)
+ − end
+ −
+ − if isempty(fs)
+ − fs = 1;
+ − end
+ − [a,b] = size(fs);
+ − if a ~= b
+ − disp(' Fs has to be a number. Only first term will be considered! ')
+ − fs = fs(1);
+ − end
+ −
+ − if nargin == 7
+ − minphase = varargin{1};
+ − else
+ − minphase = false;
+ − end
+ −
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − [Na,Nb] = size(ir);
+ − np = zeros(Na,Nb);
+ − nz = zeros(Na,Nb);
+ − for nn = 1:Nb
+ −
+ − r = ir(:,nn);
+ − d = id(1,nn);
+ − p = ip;
+ − % iresp = mresp(:,nn);
+ −
+ − % k = sum(r)+d;
+ −
+ − % stabilizing poles
+ − sp = p;
+ − unst = abs(p) > 1;
+ − sp(unst) = 1./conj(sp(unst));
+ −
+ − s = cos((2*pi/fs).*f) + 1i.*sin((2*pi/fs).*f);
+ −
+ − pp = p(unst);
+ − psp = sp(unst);
+ − for ii = 1:length(s)
+ − nterm = 1;
+ − for jj = 1:length(sp(unst))
+ − nterm = nterm.*(s(ii)-pp(jj))./(s(ii)-psp(jj));
+ − end
+ − phs(ii,1) = angle(nterm);
+ − end
+ −
+ − resp(:,nn) = mresp(:,nn).*(cos(phs)+1i.*sin(phs));
+ −
+ − % output stable poles
+ − np(:,nn) = sp;
+ −
+ − if minphase
+ − if d~=0
+ − error('!!!Minimum phase filers can be obtained only when direct term is zero')
+ − end
+ − % finding zeros
+ − % N = Na+1;
+ − % [mults, idx] = mpoles(p,1e-15,0); % checking for poles multiplicity
+ − % p = p(idx); % re-arrange poles & residues
+ − % r = r(idx);
+ − % den = poly(p);
+ − % num = conv(den,d);
+ − % for i=1:Na
+ − % temp = poly( p([1:(i-mults(i)), (i+1):Na]) );
+ − % num = num + [r(i)*temp zeros(1,N-length(temp))];
+ − % end
+ − % zrs = roots(num);
+ − D = 0; % direct term of sigma
+ −
+ − A = diag(p);
+ − B = ones(Na,1);
+ − C = zeros(1,Na);
+ − % Real poles have real residues, complex poles have comples residues
+ −
+ − cindex=zeros(1,Na);
+ − for m=1:Na
+ − if imag(p(m))~=0
+ − if m==1
+ − cindex(m)=1;
+ − else
+ − if cindex(m-1)==0 || cindex(m-1)==2
+ − cindex(m)=1; cindex(m+1)=2;
+ − else
+ − cindex(m)=2;
+ − end
+ − end
+ − end
+ − end
+ −
+ −
+ − for kk = 1:Na
+ − if cindex(kk) == 1
+ − A(kk,kk)=real(p(kk));
+ − A(kk,kk+1)=imag(p(kk));
+ − A(kk+1,kk)=-1*imag(p(kk));
+ − A(kk+1,kk+1)=real(p(kk));
+ − B(kk,1) = 2;
+ − B(kk+1,1) = 0;
+ − C(1,kk) = real(r(kk,1));
+ − C(1,kk+1) = imag(r(kk,1));
+ − elseif cindex(kk) == 0 % real pole
+ − C(1,kk) = r(kk,1);
+ − end
+ − end
+ −
+ − [zrs,p2,k] = ss2zp(A,B,C,D,1);
+ −
+ − % stabilizing zeros
+ − szrs = zrs;
+ − % willing to work with columns
+ − [a,b] = size(szrs);
+ − if a<b
+ − szrs = szrs.'; % reshape as a column vector
+ − zrs = zrs.';
+ − end
+ − % adding the zero at the origin
+ − zrs = [0;zrs];
+ − szrs = [0;szrs];
+ − % do stabilization
+ − zunst = abs(zrs) > 1;
+ − szrs(zunst) = 1./conj(zrs(zunst));
+ −
+ − zzrs = zrs(zunst);
+ − zszrs = szrs(zunst);
+ − for ii = 1:length(s)
+ − nterm = 1;
+ − for jj = 1:length(szrs(zunst))
+ − nterm = nterm.*(s(ii)-zszrs(jj))./(s(ii)-zzrs(jj));
+ − end
+ − zphs(ii,1) = angle(nterm);
+ − end
+ −
+ − resp(:,nn) = resp(:,nn).*(cos(zphs)+1i.*sin(zphs));
+ −
+ − % output stable zeros
+ − nz(:,nn) = szrs;
+ − end
+ −
+ − end
+ −
+ −
+ − % output
+ − if nargout == 1
+ − varargout{1} = resp;
+ − elseif nargout == 2
+ − varargout{1} = resp;
+ − varargout{2} = np;
+ − elseif (nargout == 3) && minphase
+ − varargout{1} = resp;
+ − varargout{2} = np;
+ − varargout{3} = nz;
+ − else
+ − error('Too many output arguments!')
+ − end
+ − end
+ −
+ −