view m-toolbox/classes/@ao/computeDFT.m @ 51:9d5c88356247 database-connection-manager

Make unit tests database connection parameters configurable
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 07 Dec 2011 17:24:37 +0100
parents f0afece42f48
children
line wrap: on
line source

% COMPUTEDFT Computes DFT using FFT or Goertzel
%   This function is used to calculate the DFT of a signal using the FFT
%   or the Goertzel algorithm.
%
%   [XX,F] = COMPUTEDFT(XIN,NFFT) where NFFT is a scalar and computes the
%   DFT XX using FFT. F is the frequency points at which the XX is
%   computed and is of length NFFT.
%
%   [XX,F] = COMPUTEDFT(XIN,F) where F is a vector with atleast two
%   elements computes the DFT XX using the Goertzel algorithm.
%
%   [XX,F] = COMPUTEDFT(...,Fs) returns the frequency vector F (in hz)
%   where Fs is the sampling frequency
%
%   Inputs:
%   XIN is the input signal
%   NFFT if a scalar corresponds to the number of FFT points used to
%   calculate the DFT using FFT.
%   NFFT if a vector corresponds to the frequency points at which the DFT
%   is calculated using goertzel.
%   FS is the sampling frequency
%
% A direct copy of MATLAB's function for LTPDA
%
% M Hewitson 08-05-08
%
% $Id: computeDFT.m,v 1.2 2008/08/01 13:19:42 ingo Exp $
%

% Copyright 2006 The MathWorks, Inc.

% [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
% Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 713-718.
% [2] Mitra, S. K., Digital Signal Processing. A Computer-Based Approach.
% 2nd Ed. McGraw-Hill, N.Y., 2001.

function [Xx,f] = computeDFT(xin,nfft,varargin)

  error(nargchk(2,3,nargin,'struct'));
  if nargin > 2,
    Fs = varargin{1};
  else
    Fs = 2*pi;
  end

  nx = size(xin,1);

  if length(nfft) > 1,
    isfreqVector = true;
  else
    isfreqVector = false;
  end

  if ~isfreqVector,
    [Xx,f] = computeDFTviaFFT(xin,nx,nfft,Fs);
  else
    [Xx,f] = computeDFTviaGoertzel(xin,nfft,Fs);
  end

end

%-------------------------------------------------------------------------
function [Xx,f] = computeDFTviaFFT(xin,nx,nfft,Fs)
  % Use FFT to compute raw STFT and return the F vector.

  % Handle the case where NFFT is less than the segment length, i.e., "wrap"
  % the data as appropriate.
  xin_ncol = size(xin,2);
  xw = zeros(nfft,xin_ncol);
  if nx > nfft,
    for j = 1:xin_ncol,
      xw(:,j) = datawrap(xin(:,j),nfft);
    end
  else
    xw = xin;
  end

  Xx = fft(xw,nfft);
  f = psdfreqvec('npts',nfft,'Fs',Fs);
end

%--------------------------------------------------------------------------
function [Xx,f] = computeDFTviaGoertzel(xin,freqvec,Fs)
  % Use Goertzel to compute raw DFT and return the F vector.

  f = freqvec(:);
  f = mod(f,Fs); % 0 <= f < = Fs
  nfld = floor(freqvec(:)/Fs);
  xm = size(xin,1); % NFFT

  % Indices used by the Goertzel function (see equation 11.1 pg. 755 of [2])
  fscaled = f/Fs*xm+1;
  k = round(fscaled);

  % shift for each frequency from default xm length grid
  deltak = fscaled-k;

  tempk = k;
  % If k > xm, fold over to the 1st bin
  k(tempk > xm) = 1;
  nfld = nfld + (tempk > xm); % Make nfld reflect fold in k because of round

  n = (0:xm-1)';
  Xx = zeros(size(k,1),size(xin,2));
  for kindex = 1:length(k)
    % We need to evaluate the DFT at the requested frequency instead of a
    % neighboring frequency that lies on the grid obtained with xm number
    % of points in the 0 to fs range. We do that by giving a complex phase
    % to xin equal to the offset from the frequency to its nearest neighbor
    % on the grid. This phase translates into a shift in the DFT by the
    % same amount. The Xx(k) then is the DFT at (k+deltak).

    % apply kernal to xin so as to evaluate DFT at k+deltak)
    kernel = exp(-j*2*pi*deltak(kindex)/xm*n);
    xin_phaseshifted = xin.*repmat(kernel,1,size(xin,2));

    Xx(kindex,:) = goertzel(xin_phaseshifted,k(kindex));
  end

  % DFT computed at exactly the frequencies it was requested for
  f = freqvec(:);
end