Mercurial > hg > ltpda
view m-toolbox/classes/@ao/wosa.m @ 51:9d5c88356247 database-connection-manager
Make unit tests database connection parameters configurable
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 07 Dec 2011 17:24:37 +0100 |
parents | bc767aaa99a8 |
children |
line wrap: on
line source
% WOSA implements Welch's overlaped segmented averaging algorithm with % segment detrending and variance estimation. % % [pxx, f, info] = wosa(x,type,pl) % [pxx, f, info] = wosa(x,y,type,pl) % % INPUTS: x - input analysis objects % y - input analysis objects % type - type of estimation: % 'psd' - compute Power Spectral Denstiy (PSD) % 'cpsd' - compute cross-spectral density % 'tfe' - estimate transfer function between inputs % 'mscohere' - estimate magnitude-squared cross-coherence % 'cohere' - estimate complex cross-coherence % pl - input parameter list % % PARAMETERS: 'Win' - a specwin window object [default: Kaiser -200dB psll] % 'Olap' - segment percent overlap [default: taken from window function] % 'Nfft' - number of samples in each fft [default: length of input data] % 'Scale' - one of % 'ASD' - amplitude spectral density % 'PSD' - power spectral density [default] % 'AS' - amplitude spectrum % 'PS' - power spectrum % * applies only to spectrum 'Type' 'psd' % 'Order' - order of segment detrending % -1 - no detrending % 0 - subtract mean [default] % 1 - subtract linear fit % N - subtract fit of polynomial, order N % % Version: $Id: wosa.m,v 1.5 2011/12/02 07:08:11 hewitson Exp $ % function varargout = wosa(varargin) import utils.const.* % Process inputs if nargin == 3 a = varargin{1}; esttype = varargin{2}; pl = varargin{3}; inunits = a.data.yunits; L = a.len; else a = varargin{1}; b = varargin{2}; esttype = varargin{3}; pl = varargin{4}; if a.data.fs ~= b.data.fs error('The two time-series have different sample rates.'); end inunits = b.data.yunits / a.data.yunits; L = min(a.len, b.len); end % Parse inputs win = find(pl, 'Win'); nfft = find(pl, 'Nfft'); percentOlap = find(pl, 'Olap')/100; scale = find(pl, 'scale'); xOlap = round(percentOlap*nfft); detrendOrder = find(pl, 'order'); fs = a.fs; winVals = win.win.'; % because we always get a column from ao.y % Compute segment details nSegments = fix((L - xOlap)./(nfft - xOlap)); utils.helper.msg(msg.PROC3, 'N segment: %d', nfft); utils.helper.msg(msg.PROC3, 'N overlap: %d', xOlap); utils.helper.msg(msg.PROC3, 'N segments: %d', nSegments); % Compute start and end indices of each segment segmentStep = nfft-xOlap; segmentStarts = 1:segmentStep:nSegments*segmentStep; segmentEnds = segmentStarts+nfft-1; % Estimate the averaged periodogram for the desired quantity switch lower(esttype) case 'psd' % Compute averaged periodogram [Sxx, Svxx] = psdPeriodogram(a, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); case 'cpsd' [Sxx, Svxx] = cpsdPeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); case 'tfe' [Sxx, Sxy, Syy] = tfePeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); case {'mscohere','cohere'} [Sxx, Sxy, Syy] = tfePeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); otherwise error('Unknown estimation type %s', esttype); end % Scale to PSD switch lower(esttype) case {'psd','cpsd'} [P, Pvxx] = scaleToPSD(Sxx, Svxx, nfft, fs); % the 1/nSegments factor should come after welchscale if we don't % want to apply sqrt() to it. % We correct for that here. It is only needed for 'asd','as' in % psd/cpsd, the other cases go always through 'PSD'. if (strcmpi(scale,'PSD') || strcmpi(scale,'PS')) dP = Pvxx; elseif (strcmpi(scale,'ASD') || strcmpi(scale,'AS')) dP = Pvxx/nSegments; else error('### Unknown scale') end case 'tfe' % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power]. % Also, corresponding freq vector and freq units. % In the Cross PSD, the frequency vector and xunits are not used. Pxx = scaleToPSD(Sxx, [], nfft, fs); Pxy = scaleToPSD(Sxy, [], nfft, fs); Pyy = scaleToPSD(Syy, [], nfft, fs); % mean and std P = Pxy ./ Pxx; % Txy if nSegments == 1 dP =[]; else dP = (nSegments/(nSegments-1)^2)*(Pyy./Pxx).*(1 - (abs(Pxy).^2)./(Pxx.*Pyy)); end case 'mscohere' % Magnitude Square Coherence estimate. % Auto PSD for 2nd input vector. The freq vector & xunits are not % used. Pxx = scaleToPSD(Sxx, [], nfft, fs); Pxy = scaleToPSD(Sxy, [], nfft, fs); Pyy = scaleToPSD(Syy, [], nfft, fs); % mean and std P = (abs(Pxy).^2)./(Pxx.*Pyy); % Magnitude-squared coherence dP = (2*P/nSegments).*(1-P).^2; case 'cohere' % Complex Coherence estimate. % Auto PSD for 2nd input vector. The freq vector & xunits are not % used. Pxx = scaleToPSD(Sxx, [], nfft, fs); Pxy = scaleToPSD(Sxy, [], nfft, fs); Pyy = scaleToPSD(Syy, [], nfft, fs); P = Pxy./sqrt(Pxx.*Pyy); % Complex coherence dP = (2*abs(P)/nSegments).*(1-abs(P)).^2; end % Compute frequencies freqs = psdfreqvec('npts', nfft,'Fs', fs, 'Range', 'half').'; % Scale to required units [Pxx, dP, info] = utils.math.welchscale(P, dP, winVals, fs, scale, inunits); info.navs = nSegments; if nSegments ==1 dev = []; else dev = sqrt(dP); end % Set outputs varargout = {Pxx, freqs, info, dev}; end % scale averaged periodogram to PSD function [Pxx, Pvxx] = scaleToPSD(Sxx, Svxx, nfft, fs) % Take 1-sided spectrum which means we double the power in the % appropriate bins if rem(nfft,2), indices = 1:(nfft+1)/2; % ODD Sxx1sided = Sxx(indices,:); % double the power except for the DC bin Sxx = [Sxx1sided(1,:); 2*Sxx1sided(2:end,:)]; if ~isempty(Svxx) Svxx1sided = Svxx(indices,:); Svxx = [Svxx1sided(1,:); 4*Svxx1sided(2:end,:)]; end else indices = 1:nfft/2+1; % EVEN Sxx1sided = Sxx(indices,:); % Double power except the DC bin and the Nyquist bin Sxx = [Sxx1sided(1,:); 2*Sxx1sided(2:end-1,:); Sxx1sided(end,:)]; if ~isempty(Svxx) Svxx1sided = Svxx(indices,:); % Take only [0,pi] or [0,pi) Svxx = [Svxx1sided(1,:); 4*Svxx1sided(2:end-1,:); Svxx1sided(end,:)]; end end % Now scale to PSD Pxx = Sxx./fs; Pvxx = Svxx./fs^2; end % compute tfe function [Sxx, Sxy, Syy] = tfePeriodogram(x, y, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) nfft = segmentEnds(1); Sxx = zeros(nfft,1); % Initialize Sxx Sxy = zeros(nfft,1); % Initialize Sxy Syy = zeros(nfft,1); % Initialize Syy % loop over segments for ii = 1:nSegments if detrendOrder < 0 xseg = x.y(segmentStarts(ii):segmentEnds(ii)); yseg = y.y(segmentStarts(ii):segmentEnds(ii)); else [xseg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); [yseg,coeffs] = ltpda_polyreg(y.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); end % Compute periodograms Sxxk = wosa_periodogram(xseg, [], winVals, nfft); Sxyk = wosa_periodogram(yseg, xseg, winVals, nfft); Syyk = wosa_periodogram(yseg, [], winVals, nfft); Sxx = Sxx + Sxxk; Sxy = Sxy + Sxyk; Syy = Syy + Syyk; % don't need to be divided by k because only rations are used here end end % compute cpsd function [Sxx, Svxx] = cpsdPeriodogram(x, y, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) Mnxx = 0; Mn2xx = 0; nfft = segmentEnds(1); for ii = 1:nSegments if detrendOrder < 0 xseg = x.y(segmentStarts(ii):segmentEnds(ii)); yseg = y.y(segmentStarts(ii):segmentEnds(ii)); else [xseg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); [yseg,coeffs] = ltpda_polyreg(y.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); end % Compute periodogram Sxxk = wosa_periodogram(xseg, yseg, winVals, nfft); % Welford's algorithm to update mean and variance Qxx = Sxxk - Mnxx; Mnxx = Mnxx +Qxx/ii; Mn2xx = Mn2xx + abs(Qxx.*conj(Sxxk - Mnxx)); end Sxx = Mnxx; if nSegments ==1 Svxx = []; else Svxx = Mn2xx/(nSegments-1)/nSegments; end end % compute psd function [Sxx, Svxx] = psdPeriodogram(x, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) Mnxx = 0; Mn2xx = 0; nfft = segmentEnds(1); % Loop over the segments for ii = 1:nSegments % Detrend if desired if detrendOrder < 0 seg = x.y(segmentStarts(ii):segmentEnds(ii)); else [seg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); end % Compute periodogram Sxxk = wosa_periodogram(seg, [], winVals,nfft); % Welford's algorithm for updating mean and variance if ii == 1 Mnxx = Sxxk; else Qxx = Sxxk - Mnxx; Mnxx = Mnxx + Qxx/ii; Mn2xx = Mn2xx + Qxx.*(Sxxk - Mnxx); end end Sxx = Mnxx; if nSegments == 1 Svxx = []; else Svxx = Mn2xx/(nSegments-1)/nSegments; end end % Scaled periodogram of one or two input signals function Sxx = wosa_periodogram(x, y, win, nfft) % window data xwin = x.*win; isCross = false; if ~isempty(y) ywin = y.*win; isCross = true; end % take fft X = fft(xwin, nfft); if isCross Y = fft(ywin, nfft); end % Compute scale factor to compensate for the window power K = win'*win; % Compute scaled power Sxx = X.*conj(X)/K; if isCross, Sxx = X.*conj(Y)/K; end end