Mercurial > hg > ltpda
view m-toolbox/classes/@ao/xspec.m @ 31:a26669b59d7e database-connection-manager
Update LTPDAworkbench
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children | bc767aaa99a8 |
line wrap: on
line source
% XSPEC performs cross-spectral analysis of various forms. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: XSPEC performs cross-spectral analysis of various forms. % The function is a helper function for various higher level % functions. It is meant to be called from other functions % (e.g., tfe). % % CALL: b = xspec(a, pl, method, iALGO, iVER, invars); % % INPUTS: a - vector of 2 input AOs % pl - input parameter list % method - one of % 'cpsd' - compute cross-spectral density % 'tfe' - estimate transfer function between inputs % 'mscohere' - estimate magnitude-squared cross-coherence % 'cohere' - estimate complex cross-coherence % iALGO - ALGONAME from the calling higher level script % iVER - VERSION from the calling higher level script % invars - invars variable from the calling higher level script % % OUTPUTS: b - output AO % % VERSION: $Id: xspec.m,v 1.61 2011/05/22 22:09:44 mauro Exp $ % % HISTORY: 30-05-2007 M Hewitson % Creation % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = xspec(varargin) import utils.const.* % unpack inputs as = varargin{1}; pl = varargin{2}; method = varargin{3}; mi = varargin{4}; invars = varargin{5}; VERSION = '$Id: xspec.m,v 1.61 2011/05/22 22:09:44 mauro Exp $'; % Set the method version string in the minfo object mi.setMversion([VERSION '-->' mi.mversion]); %----------------- Select all AOs with time-series data tsao = []; for ll = 1:numel(as) if isa(as(ll).data, 'tsdata') tsao = [tsao as(ll)]; else warning('### xspec requires tsdata (time-series) inputs. Skipping AO %s. \nREMARK: The output doesn''t contain this AO', invars{ll}); end end if numel(tsao) ~= 2 error('### XSPEC needs two time-series AOs.'); end %----------------- Gather the input history objects inhists = [tsao(:).hist]; %----------------- Check the time range time_range = mfind(pl, 'split', 'times'); for ll = 1:numel(tsao) if ~isempty(time_range) switch class(time_range) case 'double' tsao(ll) = split(tsao(ll), plist(... 'times', time_range)); case 'timespan' tsao(ll) = split(tsao(ll), plist(... 'timespan', time_range)); case 'time' tsao(ll) = split(tsao(ll), plist(... 'start_time', time_range(1), ... 'end_time', time_range(2))); case 'cell' tsao(ll) = split(tsao(ll), plist(... 'start_time', time_range{1}, ... 'end_time', time_range{2})); otherwise end end if tsao(ll).len <= 0 error('### The object is empty! Please revise your settings ...'); end end %----------------- Resample all AOs copies = zeros(size(tsao)); fsmin = ao.findFsMin(tsao); fspl = plist(param('fsout', fsmin)); for ll = 1:numel(tsao) % Check Fs if tsao(ll).data.fs ~= fsmin utils.helper.msg(msg.PROC1, 'resampling AO %s to %f Hz', tsao(ll).name, fsmin); % Make a deep copy so we don't % affect the original input data tsao(ll) = copy(tsao(ll), 1); copies(ll) = 1; resample(tsao(ll), fspl); end end %----------------- Truncate all vectors % Get shortest vector lmin = ao.findShortestVector(tsao); nsecs = lmin / fsmin; for ll = 1:numel(tsao) if len(tsao(ll)) ~= lmin utils.helper.msg(msg.PROC2, 'truncating AO %s to %d secs', tsao(ll).name, nsecs); % do we already have a copy? if ~copies(ll) % Make a deep copy so we don't % affect the original input data tsao(ll) = copy(tsao(ll), 1); copies(ll) = 1; end tsao(ll).select(1:lmin); end end %----------------- check input parameters usepl = utils.helper.process_spectral_options(pl, 'lin', lmin, fsmin); % Loop over input AOs utils.helper.msg(msg.PROC1, 'computing %s(%s -> %s)', method, invars{1}, invars{2}); % -------- Make Xspec estimate % Compute xspec using welch and always scale to PSD [txy, f, info, dev] = welch(tsao(1), tsao(2), method, usepl.pset('Scale', 'PSD')); % Keep the data shape of the first input AO if size(tsao(1).data.y,1) == 1 txy = txy.'; f = f.'; dev = dev.'; end % create new output fsdata fsd = fsdata(f, txy, fsmin); fsd.setEnbw(info.enbw); fsd.setXunits('Hz'); switch lower(method) case 'tfe' fsd.setYunits(tsao(2).data.yunits / tsao(1).data.yunits); case 'cpsd' fsd.setYunits(tsao(2).data.yunits * tsao(1).data.yunits / unit('Hz')); case {'mscohere','cohere'} fsd.setYunits(unit()); otherwise error(['### Unknown method:' method]); end fsd.setNavs(info.navs); % set object t0 if eq(tsao(1).t0, tsao(2).t0) fsd.setT0(tsao(1).t0); end % make output analysis object bs = ao(fsd); % add variance bs.data.dy = dev; % simplify the units in the case of cpsd calculation if strcmp(method, 'cpsd') bs.simplifyYunits(... plist('prefixes', false, 'exceptions', 'Hz')); end %----------- Add history % set name bs.name = sprintf('%s(%s->%s)', upper(method), invars{1}, invars{2}); % we need to get the input histories in the same order tsao the inputs % to this function call, not in the order of the input to xspec; % otherwise the resulting matrix on a 'create from history' will be % mirrored. bs.addHistory(mi, usepl, [invars(:)], inhists); % Propagate 'plotinfo' if ~isempty(tsao(1).plotinfo) || ~isempty(tsao(2).plotinfo) bs.plotinfo = combine(tsao(1).plotinfo, tsao(2).plotinfo); end % Set output varargout{1} = bs; end