line source
% A test script for ao/whiten2D
%
% L. Ferraioli 18-11-08
%
% $Id: test_ao_whiten2D.m,v 1.6 2009/04/20 14:31:14 luigi Exp $
%
%%
clear all
%% CSD Noise models
% Mdc2 noise model
% mod = ltpnoise();
load mpsd.mat % load mpsd.mat first column is f then csd11, csd12 and csd22
f = mpsd(:,1); % frequency vector
csd11 = mpsd(:,2);
csd12 = mpsd(:,3);
csd22 = mpsd(:,4);
fs = 10; % sampling frequency
% Building AOs
ltp_csd11 = ao(fsdata(f,csd11,fs));
ltp_csd12 = ao(fsdata(f,csd12,fs));
ltp_csd21 = ao(fsdata(f,conj(csd12),fs));
ltp_csd22 = ao(fsdata(f,csd22,fs));
%%
iplot(ltp_csd11,ltp_csd12,ltp_csd22)
%% Colored Noise generation
% Make white noise
a1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', 10, 'nsecs', 10000));
a2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', 10, 'nsecs', 10000));
a = [a1 a2];
% Generation from white noise
pl = plist(...
'csd11', ltp_csd11,...
'csd12', ltp_csd12,...
'csd21', ltp_csd21,...
'csd22', ltp_csd22,...
'MaxIter', 70, ...
'PoleType', 2, ...
'MinOrder', 20, ...
'MaxOrder', 30, ...
'Weights', 2, ...
'Plot', false,...
'MSEVARTOL', 1e-2,...
'FITTOL', 1e-3,...
'UseSym', 0,...
'Disp', false);
ac = noisegen2D(a, pl);
%% Checking generated noise
acxx1 = ac(1).psd;
acxx2 = ac(2).psd;
acxx12 = ac.cpsd;
iplot(abs(acxx1),abs(ltp_csd11))
iplot(abs(acxx12),abs(ltp_csd12))
iplot(abs(acxx2),abs(ltp_csd22))
%% Noise whitening
pl = plist(...
'csd11', ltp_csd11, ...
'csd12', ltp_csd12, ...
'csd21', ltp_csd21, ...
'csd22', ltp_csd22, ...
'MaxIter', 75, ...
'PoleType', 3, ...
'MinOrder', 20, ...
'MaxOrder', 40, ...
'Weights', 2, ...
'Plot', false,...
'MSEVARTOL', 1e-2,...
'FITTOL', 1e-3,...
'UseSym', 0,...
'Disp', false);
aw = whiten2D(ac, pl);
%% Checking whitened noise
awxx1 = aw(1).psd;
awxx2 = aw(2).psd;
%%
iplot(awxx1,awxx2)
%% Checking
aw1 = aw(1);
aw2 = aw(2);
awxx1 = awxx(1,1);
awxx2 = awxx(2,2);
mw1 = aw1.mean; % 0 expected
vw1 = aw1.var; % 1 expected
mw2 = aw2.mean; % 0 expected
vw2 = aw2.var; % 1 expected
mwxx1 = awxx1.mean; % 0.2 expected
vwxx1 = awxx1.var;
mwxx2 = awxx2.mean; % 0.2 expected
vwxx2 = awxx2.var;
% correlation coefficients
% diagonal terms are aw1 and aw2 variances
% cross terms are data series covariances, a value close to 0 means no
% correlation between the data series
crc = corrcoef([aw1.data.y.' aw2.data.y.']);
% END