Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/eigcsd.m @ 37:a4b7ceae0403 database-connection-manager
Show backtrace on unit test errors
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% EIGCSD calculates TFs from 2D cross-correlated spectra. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: % % Calculates TFs or WFs from 2dim cross correlated spectra. Input the % elemnts of a cross-spectral matrix % % / csd11(f) csd12(f) \ % CSD(f) = | | % \ csd21(f) csd22(f) / % % and output the frequency response of four innovation transfer % functions or four whitening filters that can be used to color white % noise or to whitening colored noise. % % CALL: [h11,h12,h21,h22] = eigcsd(csd11,csd12,csd21,csd22,varargin) % [h11,h12,h21,h22] = eigcsd(csd11,csd12,[],csd22,varargin) % [h11,h12,h21,h22] = eigcsd(csd11,[],csd21,csd22,varargin) % % INPUT: % % csd11, csd12, csd21 and csd22 are the elements of the cross spectral % matrix % Input also the parameters specifying calculation options % 'USESYM' define the calculation method, allowed values are 0 % (double precision arithmetic) and 1 (symbolic toolbox variable % precision arithmetic) % 'DIG' define the digits used in VPA calculation % 'OTP' define the output type. Allowed values are 'TF' output the % transfer functions or 'WF' output the whitening filters frequency % responses % 'KEEPVAR' get a whitening filter that preserve the variance of % the input data. Values are true or false % 'VARS' first and second channels variance % % OUTPUT: % % h11, h12, h21 and h22 are the four innovation TFs frequency responses % or the four whitening filters frequency responses % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HISTORY: 02-10-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % VERSION: $Id: eigcsd.m,v 1.8 2009/06/16 16:06:50 luigi Exp $ % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [h11,h12,h21,h22] = eigcsd(csd11,csd12,csd21,csd22,varargin) % Init S11 = csd11; S22 = csd22; if isempty(csd12) && isempty(csd21) error(' You must input csd12 or csd21 ') end if isempty(csd12) S12 = conj(csd21); else S12 = csd12; end if isempty(csd21) S21 = conj(csd12); else S21 = csd21; end npts = length(S11); % Finding parameters % default usesym = 0; dig = 50; otp = 'TF'; kv = false; vars = [1 1]; % fs = 10; if ~isempty(varargin) for j=1:length(varargin) if strcmp(varargin{j},'USESYM') usesym = varargin{j+1}; end if strcmp(varargin{j},'DIG') dig = varargin{j+1}; end if strcmp(varargin{j},'OTP') otp = varargin{j+1}; end if strcmp(varargin{j},'KEEPVAR') kv = varargin{j+1}; end if strcmp(varargin{j},'VARS') vars = varargin{j+1}; end end end % Defining calculation method if usesym == 1 method = 'VPA'; else method = 'NUM'; end % Finding suppression k = min(sqrt(S11./S22)); if k>=1 suppr = floor(k); else n=0; while k<1 k=k*10; n=n+1; end k = floor(k); suppr = k*10^(-n); end supmat = [1 0;0 suppr]; % isupmat = [1 0;0 1/suppr]; isupmat = inv(supmat); % check for keep variance option if isequal(otp,'WF') && kv % get mean of spectra s1 = sqrt(vars(1)); s2 = sqrt(vars(2)); end % Core Calculation switch method case 'NUM' % initializing output data h11 = ones(npts,1); h12 = ones(npts,1); h21 = ones(npts,1); h22 = ones(npts,1); % T = zeros(2,2,npts); % D = zeros(2,2,npts); for phi = 1:npts % Appliing suppression PP = supmat*[S11(phi) S12(phi);S21(phi) S22(phi)]*supmat; [V,D] = eig(PP); % Correcting the output of eig Vp = fliplr(V); Lp = rot90(rot90(D)); % Correcting the phase [a,b] = size(PP); for ii=1:b Vp(:,ii) = Vp(:,ii).*(cos(angle(Vp(ii,ii)))-1i*sin(angle(Vp(ii,ii)))); Vp(ii,ii) = real(Vp(ii,ii)); end % Definition of the transfer functions switch otp case 'TF' HH = isupmat*[Vp(:,1) Vp(:,2)]*[sqrt(Lp(1,1)) 0;0 sqrt(Lp(2,2))]; case 'WF' HH = [1/sqrt(Lp(1,1)) 0;0 1/sqrt(Lp(2,2))]*inv(Vp)*supmat; % HH = [1/sqrt(Lp(1,1)) 0;0 1/sqrt(Lp(2,2))]*(Vp')*supmat; end if isequal(otp,'WF') && kv h11(phi,1) = s1*HH(1,1); h12(phi,1) = s1*HH(1,2); h21(phi,1) = s2*HH(2,1); h22(phi,1) = s2*HH(2,2); else h11(phi,1) = HH(1,1); h12(phi,1) = HH(1,2); h21(phi,1) = HH(2,1); h22(phi,1) = HH(2,2); end % T(:,:,phi) = conj(HH)*[S11(phi) S12(phi);S21(phi) S22(phi)]*HH.'; % D(:,:,phi) = conj(HH)*HH.' - [S11(phi) S12(phi);S21(phi) S22(phi)]; end case 'VPA' % Define the numerical precision digits(dig) % initializing output data h11 = vpa(ones(npts,1)); h12 = vpa(ones(npts,1)); h21 = vpa(ones(npts,1)); h22 = vpa(ones(npts,1)); SS11 = vpa(S11); SS12 = vpa(S12); SS21 = vpa(S21); SS22 = vpa(S22); for phi = 1:npts % Appliing suppression PP = supmat*[SS11(phi) SS12(phi);SS21(phi) SS22(phi)]*supmat; [V,D] = eig(PP); Vp1 = V(:,1); Vp2 = -1.*V(:,2); Lp1 = D(1,1); Lp2 = D(2,2); % Definition of the transfer functions switch otp case 'TF' HH = isupmat*[Vp1 Vp2]*[sqrt(Lp1) 0;0 sqrt(Lp2)]; case 'WF' % HH = [1/sqrt(Lp1) 0;0 1/sqrt(Lp2)]*inv([Vp1 Vp2])*supmat; HH = inv(isupmat*[Vp1 Vp2]*[sqrt(Lp1) 0;0 sqrt(Lp2)]); end if isequal(otp,'WF') && kv h11(phi,1) = s1*HH(1,1); h12(phi,1) = s1*HH(1,2); h21(phi,1) = s2*HH(2,1); h22(phi,1) = s2*HH(2,2); else h11(phi,1) = HH(1,1); h12(phi,1) = HH(1,2); h21(phi,1) = HH(2,1); h22(phi,1) = HH(2,2); end end h11 = double(h11); h12 = double(h12); h21 = double(h21); h22 = double(h22); end